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Abstract

Traditional clustering methods assume that precise pairwise distances for the input data are
readily available. However, this assumption is often impractical in real-world scenarios where
data points cannot be measured accurately. For instance, machine learning-based techniques for
estimating distances may fail when the dataset consists of images, videos, or natural language. This
paper studies clustering and graph problems in settings where direct access to pairwise distances
between all pairs is expensive. We adopt oracle-based methods as defined by Galhotra et al. (2024),
focusing on two types of oracles: the quadruplet oracle, a weak and inexpensive comparator that
answers binary queries of the form “Is A closer to B or C closer to D?” and the distance oracle,
a stronger but costlier oracle that returns exact pairwise distances. The quadruplet oracle can be
implemented via crowdsourcing, trained classifiers, or other predictive models. As these sources are
often unreliable, the oracle’s responses may be noisy; we consider both probabilistic and adversarial
noise models.

Consider a finite metric space ¥ = (), d) of size |V| = n that supports the quadruplet and
the distance oracle. When the input dataset has low intrinsic (doubling) dimension, for each of the
k-center, k-median, and k-means clustering problem on V, we design constant approximation algo-
rithms that perform O(n + k?) calls to the quadruplet oracle and O(1) calls to the distance oracle
in both noise models. For general metric spaces, our algorithms achieve constant approximation
while making O(nk) calls to the quadruplet oracle and O(1) calls to the distance oracle. In all
cases, we improve the quadruplet oracle query complexity by a factor of k and the distance oracle
call complexity by a factor of k2 compared to Galhotra et al. (2024).

Furthermore, in low dimensional settings, if the spread of the input data is polynomially
bounded, we construct a data structure performing O(n) queries to the quadruplet oracle and O(1)
queries to the distance oracle, such that given any query pair of vertices (u,v) € V x V, it approxi-
mates the distance d(u, v) without using any oracle queries. Once the data structure is constructed,
we can emulate standard algorithms for various graph problems on Y without additional oracle
queries.

In summary, our results show that access to a noisy pairwise ranker for distances is to suffi-
cient to efficiently solve a large class of problems while almost entirely bypassing exact distance
computations.

Keywords: clustering, k-center, k-median, k-means, comparison oracles, learned rankers, learning-
augmented algorithms
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1. Introduction

Unsupervised learning techniques are widely used in applications such as data summarization, or-
ganization, and document categorization. Classical approaches to unsupervised learning, such as
k-center, k-median, and k-means, have been extensively studied for decades and serve as core
methods for structuring and understanding datasets across various domains. However, these meth-
ods generally assume the availability of precise pairwise distances, a requirement that is frequently
challenging in real-world scenarios. For complex data types like images, videos, or natural lan-
guage, defining high-quality distances that align with semantic meaning often requires sophisticated
embedding models, which are generally computationally intense and financially expensive.

Even when a distance metric is well-defined, computing distances between objects can still
have high computational complexity. Metrics such as Earth Mover’s Distance Rubner et al. (2000);
Peyré and Cuturi (2019) and Hausdorff Distance Huttenlocher et al. (1993); Dubuisson and Jain
(1994) are valuable in practice yet evaluating distances under these metrics often require substantial
computational resources.

Motivated in part by the difficulty of computing exact distances, there has been extensive work
on methods that avoid direct distance computation. A common strategy involves the use of oracles,
which serve as abstractions of ML or human feedback. A well-known example is an oracle that
compares relative distances (Is A closer to B, or is C closer to D?), which is commonly known as
the quadruplet oracle. There is a rich body of work employing such oracles for problems including
k-center clustering Addanki et al. (2021), top-down hierarchical clustering Emamjomeh-Zadeh and
Kempe (2018); Chatziafratis et al. (2018); Ghoshdastidar et al. (2019), correlation clustering Ukko-
nen (2017), learning fairness metrics Ilvento (2020), and classification Tamuz et al. (2011); Hopkins
et al. (2020). In practice, implementing such oracles is often easier than computing precise distance
measurements. This is partly because these oracles are inherently “local” — they do not require
reasoning over the entire dataset. This also makes it easier for human annotators to provide labels
and for models to learn—mirroring the simplicity of classification over regression.

In this work, we study clustering and other metric graph optimization problems using the
quadruplet oracle that, given two pairs of records, provides which pair is closer, effectively func-
tioning as a pairwise ranker for distances. We think of the quadruplet oracle as weak; not only
does it provide limited information, it is also susceptible to noise. The noise captures the fact that
both ML models and human annotators are prone to errors. However, for certain problems such
as k-medians/means, it is known that even a perfect quadruplet oracle is insufficient to obtain a
constant-factor approximation Galhotra et al. (2024).

Therefore, we assume access not only to the weak quadruplet oracle but also to a strong distance
oracle capable of providing exact distance measurements. This model was introduced by Galhotra
et al. (2024), and we refer to it hereafter as the rank-and-measure (RM) model. The RM model ap-
plies to any setting where comparing distances is significantly cheaper than computing exact ones.
A concrete instantiation of the RM model could involve a pairwise ranker trained on crowd-sourced
labels serving as the quadruplet oracle, while the distance oracle corresponds to a commercial em-
bedding service that yields accurate but costly distance estimates. Learned rankers may indeed serve
effectively as the quadruplet oracle, as they have demonstrated strong performance across a range of
domains, including document retrieval Burges et al. (2005) and image similarity Wang et al. (2014).
In fact, recent work suggests that even large language models can act as effective quadruplet oracles
without any task-specific training Qin et al. (2024).
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Recently, there has been considerable interest in clustering and related tasks within similar
weak-strong models Bateni et al. (2024); Galhotra et al. (2024); Silwal et al. (2023); Xu et al.
(2024). The notions of “weak” and “strong” are contextual, but at a high level, they reflect differ-
ences in information content and reliability, with the former being easier to obtain, and the latter
being more expensive.

Our goal in this paper is to study the query complexity of clustering and other metric graph
optimization problems in the RM model. In addition to the general setting, where no assumptions
are made about the similarity measure between objects in the dataset, we also consider the case
where the dataset exhibits low intrinsic dimensionality. In practice, many datasets such as word
embeddings Yin and Shen (2018), social networks Nakis et al. (2025), and biological sequences Ng
and Zhang (2002); Tenenbaum et al. (2000) often have low intrinsic dimensionality with respect
to meaningful similarity metrics, even though they are stored in high-dimensional spaces. While
this suggests that the underlying structure may be captured more efficiently, many of the earlier
challenges associated with computing distances continue to hold.

In this paper, we present algorithms for clustering with near-optimal query complexity in both
the general and low intrinsic dimensionality settings. Furthermore, when the intrinsic dimensional-
ity of the dataset is low, we provide a general tool that allows standard algorithms to be used directly
for a broad class of metric graph problems (such as metric Minimum Spanning Tree). Our results
show that, with access to a noisy pairwise ranker for distances, a large class of problems can be
solved efficiently while almost entirely bypassing exact distance computations.

1.1. Problem Statement

Let 3 = (V, d) be a finite metric space of size |V| = n, where d : ¥V x)V — R denotes the distance
function. The set V represents the objects of interest—such as the elements of a dataset we aim to
cluster—while d captures a meaningful notion of dissimilarity between them. Any such metric
space can be naturally viewed as a weighted complete graph Gy, = (V, €, d), where € contains all
edges between pairs of objects and each edge is weighted according to their distance.

Rank-and-Measure (RM) Model. In this paper, we study computational tasks where access to X
is governed by the RM model. In this setting, direct access to the distance function d is unavailable.
Instead, all distance-related information must be obtained through two oracles. The first is a weak
but inexpensive quadruplet oracle, which, given a pair of distinct edges (e, ez) € € x &, reveals
only whether d(e;) < d(ez). The second is a strong but expensive distance oracle, which returns
the exact value of d(e) for any edge e € £. While the quadruplet oracle is cheap, its responses are
subject to noise. We consider two distinct noise models.

(a) Quadruplet Oracle with Probabilistic Noise. For a constant ¢ € [0, %), a quadruplet
oracle with probabilistic noise ¢ is a function Q : & x & — {YESs, No} that, given two edges
e, ey € &, where e; = {v1,v2}, and e2 = {v3,v4}, outputs

A ) YES, with probability at least 1 — ¢, if d(vq,v2) < d(vs3,v4),
€ ) € = . oqe .
b No, with probability at least 1 — ¢,  if d(vi,v2) > d(vs, v4).

In other words, the oracle fails to identify the closer pair with probability at most ¢. Further-
more, the randomness is independent across distinct queries and is fixed once per edge pair;
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thus, repeated calls to Q(el, @9) always return the same result, and flipping the order of the
edges always flips the answer. This property is referred to as persistence.

(b) Quadruplet Oracle with Adversarial Noise. Let ¢ € R>( be a constant. A quadruplet
oracle with adversarial noise p is a function Q : € x & — {YES, NO} that, given two edges
e, ey € &, where e; = {v1,v2}, and e2 = {3, v4}, outputs,

YES, if d 1)1,1)2) < 1+ (7)3,1)4),
Q(er,e2) = ¢ No, if d(vi,v2) > (1 + p)d(vs,va),
. e 1 d(v1,02)

Adversarially chosen, if T S d(v; vz) <1+ p.
The oracle accurately identifies the closer pair when the relative distance gap is large, but
may respond adversarially otherwise. When p = 0, responses are exact. We assume that
the adversary is non-adaptive, i.e., all responses are fixed a priori and do not depend on the
algorithm’s queries. As in the probabilistic model, the oracle satisfies persistence: each query
yields a fixed response, and flipping the order of the inputs always flips the answer.

Finally, we note that a specific instantiation of the RM model always assumes a single noise
model for the quadruplet oracle—either probabilistic or adversarial, but never both simultaneously.

In this paper, we study the following problems under the RM model.

I. Clustering. We begin with the classical task of k-clustering. The goal is to select k representative

centers, from a dataset so as to minimize a suitable clustering cost. We formalize this as follows.
For two subsets of vertices U, W C V, let F74(VV) denote a clustering cost function measuring the
cost of using U/ as centers for the points in W. Let OPTH (W) = minycy, )=k Fu(W) denote
the cost of the optimal k-clustering of V. We focus on three standard objectives: the k-center
cost, COSTyy (W) = maxyey d(w,U); the k-median cost, CoST,(W) = >, o d(w,U); and
the k-means cost, COST (W) = 3, oy d2(w, U).

Problem OracleCluster. Given a finite metric space ¥ = (V, d) accessible under the RM model,
a positive integer k, and a clustering cost function /' € {COSTS;, COST%,7 COST%}, the goal is to
find a set A C V of size |A| = k such that F,4(V) < O(1) - OPT¥ (V).

In the standard setting, constant-factor approximations to k-clustering require €2(nk) distance
queries for general metrics Bateni et al. (2023) and Q(n) queries for low-dimensional metrics.
Naturally, in the RM model one might hope to reduce this cost by leveraging the cheaper quadru-
plet oracle. Ideally, one would like to solve the OracleCluster problem using only quadruplet
queries. However, it is known that approximating k-median and k-means is not possible using only
the quadruplet oracle Galhotra et al. (2024). This limitation raises a natural question: while the
quadruplet oracle cannot fully replace distance queries, can it almost eliminate the need for them?
Specifically, we ask:

Can OracleCluster be solved using O(nk) queries to the quadruplet oracle and O(1) queries to
the distance oracle? ! If 3 has low intrinsic dimension, can the number of quadruplet queries be
further reduced to O(n)?

1. The notation O(-) is used to hide log®™") (n) factors.
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Clusterinﬁ Clustering bounded Clustering
bounded doubling doubling and bounded spread general
Quadr Dist Quadr Dist Quadr Dist
Addanki et al. 2021) ||  O(nk?) 0 O(nk?) 0 O(nk?) 0
(k-center)
Galhotra et al. (2024) | O(nk) | O(k?) | O(nk) O(k?) O(nk) | O(K?)
NEW On+k)| 01) | OMm) O(1) O(nk) | O(1)

Table 1: Comparison of the number of queries to the quadruplet oracle (Quadr) and distance oracle
(Dist) of our new algorithms with the state-of-the-art for k-center/median/means OracleCluster
problem. All algorithms return constant approximation solutions. The results in Addanki et al.
(2021) only hold for the k-center OracleCluster problem under the adversarial noise model. For
the probabilistic noise model, their algorithm for k-center only hold if optimal k-center clusters are
of size at least Q(y/n).

I1. Approximate Distance Data Structure. Beyond clustering, we also aim to understand the cost

of learning a model of X that can approximately recover all pairwise distances. We formalize this
as follows:

Problem OracleDS. Given a finite metric space ¥ = (V, d) accessible under the RM model,
the goal is to construct a data structure D such that, for any edge € € &, it returns a value
d(e) € Rxq satisfying d(e) < d(e) < O(1) - d(e). Furthermore, D must be non-adaptive post-
construction—i.e., it should not perform any additional oracle queries—and should be efficient in
both storage and query time.

An approximate distance data structure is a powerful primitive: for many tasks (including clus-
tering), approximate distances suffice to obtain high-quality solutions. However, this also makes
the problem more challenging. We are especially interested in settings where OracleDS can be
solved using o(n?) queries to the quadruplet oracle and o(n) distance queries. Unfortunately, such
guarantees seem challenging for general metrics. Hence, we ask:

Can we solve OracleDS using O(n) queries to the quadruplet oracle and O(1) queries to the
distance queries in structured settings?

1.2. Our Contributions

In this paper, we answer both questions posed in Section 1.1 in the affirmative. Before stat-
ing our results, we introduce two standard notions used to capture structure in metric spaces.
To model low-dimensional structure, we use the well-established notion of bounded doubling di-
mension Krauthgamer and Lee (2005). The doubling dimension of X is the smallest number
dim(3) such that every ball of radius p > 0 can be covered by at most 2dim(2) palls of ra-
dius p/2. We say that ¥ has bounded doubling dimension if dim(X) < C for some fixed con-
stant C'. We also consider metrics with bounded spread, where the spread of X is defined as
$ = max{d(u,v) : u,v € V}/min{d(u,v) : v # v € V}. A metric space is said to have
bounded spread if $ < poly(|V|), where poly(-) denotes a fixed polynomial.

Throughout the remainder of this paper, we focus our presentation exclusively on the probabilis-
tic error model, as it is the more challenging case. However, our approach for the probabilistic model
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also encompasses the adversarial model. In fact, all subsequent theorems continue to hold—often
with the same or even better bounds.

Our first main contribution is the following result for the OracleCluster problem.

Theorem 1 There exist randomized algorithms such that, given a finite metric space ¥ = (V,d)
of size |V| = n, accessible under the RM model, for each of the k-center, k-median, and k-means
instances of the OracleCluster problem on %, the corresponding algorithm, with high probability,
computes an O(1)-approximation with the following query complexities:

* For general metrics, the algorithm uses 0] (1) distance queries and 5(nk) quadruplet queries.

* If ¥ has bounded doubling dimension, the algorithm uses 9] (1) distance queries and 5(71 +
k%) quadruplet queries.

We note that our algorithms for OracleCluster are near-optimal, up to polylogarithmic factors
for general metric spaces. It is known that any non-trivial approximation for k-center, k-median, or
k-means clustering in general metric spaces requires (2(nk) distance queries Bateni et al. (2023).
Furthermore, Galhotra et al. Galhotra et al. (2024) show that in the RM model, even with a perfect
quadruplet oracle, any algorithm for k-median or k-means must make at least {2(1) distance queries.
Together, these results imply that the combined number of distance and quadruplet queries must be
at least Q(nk), with at least (1) distance queries. Additionally, even when the doubling dimension
is bounded, any algorithm must examine at least {2(n) edges. Hence, our algorithms achieve near-
optimal query complexity for both general and low-dimensional metric spaces.

Our second contribution is an algorithm for the OracleDS problem when the underlying metric
has bounded doubling dimension and bounded spread.

Theorem 2 There exists a randomized algorithm which, given any metric space > = (V, d) of size
|V| = n, with bounded doubling dimension and polynomially bounded spread, and accessible under
the RM model, constructs a data structure D that, with high probability, satisfies the following
guarantees:

» For any edge ¢ € &, D returns a value d(e) satisfying d(e) < d(e) < O(1) - d(e), in
O(logn) time and without further oracle access.

* The construction of the data structure uses 0] (n) queries to the quadruplet oracle and 5(1)
queries to the distance oracle.

« The data structure requires O(n) space.

Once D is constructed, it serves as a powerful primitive: any robust algorithm Alg designed
for the full-information setting can be executed on X as a black box, using distances provided by
D. By robust, we mean that the algorithm tolerates distances being scaled by a constant factor.
For instance, when X has bounded doubling dimension and polynomially bounded spread, D di-
rectly yields O(1)-approximation algorithms for the k-center, k-median, and k-means OracleClus-
ter problems, without requiring additional oracle queries (see Table 1). Even when the spread is
unbounded, our techniques extend to settings where the optimal solution is within a polynomial
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factor of the spread (e.g., the Minimum Spanning Tree problem). For such problems, we derive
O(1)-approximation algorithms using O(n) queries to the quadruplet oracle and O(1) queries to
the distance oracle. In fact, Theorem 2 also plays a crucial role in our algorithm for k-median in
Theorem 1 (when the spread is unbounded).

Finally, to evaluate the practical effectiveness of our approach, we implement the approxi-
mate distance data structure D and use it to run algorithms for k-center, k-median, and Minimum
Spanning Tree. Experiments on both synthetic and real datasets show that our algorithms achieve
constant-factor approximation while using only about 1% of the distance queries required by simple
baselines.

2. Related Work

Addanki et al. (2021) introduced the study of clustering using the quadruplet oracle, considering
both adversarial and probabilistic error models. In the adversarial setting, they designed a ran-
domized O(1)-approximation algorithm requiring O (nk? 4 nk log? n) queries. In the probabilistic
setting, they could not design a general algorithm without imposing structural assumptions on the
optimal clustering. They also experimentally validated their model by training a classifier to emulate
the quadruplet oracle from crowdsourced responses and using it for clustering.

Recently, Galhotra et al. (2024) improved the query complexity for k-center under the adversar-
ial error model, achieving O(nk + k%) queries using only the quadruplet oracle. They also demon-
strated that even with a perfect quadruplet oracle, it was not possible to obtain a O(1)-approximation
for k-means and k-median without distance queries. This motivated them to consider a weak-
strong framework, where the weak oracle provides inexpensive quadruplet comparisons, and the
strong oracle returns exact distances but is expensive. Under this framework, they designed O(1)-
approximation algorithms for k-center, k-median, and k-means clustering for general metric spaces,
achieving query complexities of O(nkpolylogn) for the quadruplet oracle and O(k?polylog n) for
the distance oracle under both adversarial and probabilistic error models. They further showed
that when the doubling dimension is bounded, the approximation ratios could be improved with-
out asymptotically increasing the query complexity. In this work, we improve the distance oracle
queries by a factor of k? in all cases, and the quadruplet oracle by a factor of & when the doubling
dimension is bounded.

Besides the aforementioned, the most closely related work to our context is by Bateni et al.
(2024), who studied k-clustering, as well as the MST problem, in general metric spaces under a
different weak-strong framework. While their strong oracle is identical to our distance oracle, their
weak oracle differs: given a pair of vertices u,v € V), it returns d(u,v) with probability at least
1 — &, and an arbitrary value otherwise. They designed O(1)-approximation algorithms for the k-
center, k-median, and k-means problems, achieving O(nk polylog n) queries to the weak oracle and
O(Kk?polylogn) queries to the strong oracle. Additionally, they proved lower bounds showing that
further improvements in query complexity were not possible within their framework. For the MST
problem, they provided a O(+/log n)-approximation using only queries to the weak oracle. We note
that the challenges in our setting are different from those in Bateni et al. (2024).

Xu et al. (2024) also recently considered a weak-strong model, under metric spaces with
bounded doubling dimension, where for any u, v, the weak oracle returns a number between d(u, v)/C
and C'd(u, v) for some C' > 1 and the strong oracle returns exact distances. However, their goal in
this setting was to construct a data structure for approximate nearest neighbor queries. Silwal et al.
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(2023) et al. have also studied the correlation clustering problem using a weak-strong framework,
however, their techniques and oracles do not extended to the k-center/median/means clustering
problems.

We note that there has been extensive work on using a probabilistic comparison oracle to ap-
proximately sort a set of elements. In this setting, it is well established that the maximum dislo-
cation cannot be improved beyond O(logn), i.e., no algorithm can order a set of elements using
such an oracle where every element is guaranteed to be placed within o(log n) positions of its true
rank. After a long line of work Braverman and Mossel (2008); Braverman et al. (2016); Geissmann
et al. (2017, 2020), it has only recently been resolved how to achieve O(logn) dislocation with
O(nlogn) queries with high probability.

Most of the other work on oracle-based clustering frameworks rely on optimal cluster queries Mazum-
dar and Saha (2017a); Huleihel et al. (2019); Mazumdar and Saha (2017b); Choudhury et al. (2019);
Green Larsen et al. (2020); Galhotra et al. (2021) to identify ground truth clusters. Recent ap-
proaches for k-means Ashtiani et al. (2016); Chien et al. (2018); Kim and Ghosh (2017a,b) and
k-median Ailon et al. (2018) leverage optimal cluster queries alongside distance information to
achieve improved approximation guarantees. Beyond clustering, distance-based comparison oracles
have been used to address a variety of problems, including learning fairness metrics Ilvento (2020),
top-down hierarchical clustering Emamjomeh-Zadeh and Kempe (2018); Chatziafratis et al. (2018);
Ghoshdastidar et al. (2019), correlation clustering Ukkonen (2017), and classification Tamuz et al.
(2011); Hopkins et al. (2020). They have also been applied to tasks such as identifying the maxi-
mum Guo et al. (2012); Venetis et al. (2012), selecting the top-k elements Klein et al. (2011); Poly-
chronopoulos et al. (2013); Ciceri et al. (2015); Davidson et al. (2014); Kou et al. (2017); Dushkin
and Milo (2018), information retrieval Kazemi et al. (2018), and skyline computation Verdugo.

3. Technical Overview

Let ¥ = (V,d) be a finite metric space with |V| = n. For any subsets U, W C V, let E(U, V) =
{{u,w} | v e U, we W, u# w} denote the edges between U/ and WV .

Our algorithms for both OracleCluster and OracleDS use O(polylogn) distance queries;
hence, they primarily rely on quadruplet queries. Even though a perfect quadruplet oracle only
provides relative ordering information, the presence of probabilistic noise significantly complicates
matters. For example, let A C V be a subset of points and consider the task of assigning each point
in '\ A to an approximate nearest neighbor in .A. This task naturally arises in both of our problems.
An intuitive approach would be to first order the edges in Y = E(A,V \ A) using the quadruplet
oracle and then use the resulting ordered sequence to assign nearest neighbors. To order Y, one may
employ existing algorithms from Geissmann et al. (2020); Klein et al. (2011) or Braverman and
Mossel (2008). Hereafter, we denote this procedure by PROB-SORT (see Appendix A.2).

To understand what PROB-SORT does we need to introduce some definitions. For any edge
set X C &, let my denote an ordered sequence over X. For an ordering 7wy and an edge e €
X, let RANK, (e) denote the index of @ in 7y, and let RANKy(e) be the true rank of @ when
X is sorted in increasing order of distance. The maximum dislocation of m is then defined as
maxecy |RANK,, (€) — RANKy(@)|. Define Dy, = clog|V|, where ¢ > 1 is a constant independent
of X. We refer to my as a low-dislocation ordering of X if the maximum dislocation of 7y is at most
Ds.. Intuitively, this means that each edge in X appears in 7y not too far from where it would be in
the perfectly sorted order.
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Returning to our original task, given Y, with high probability PROB-SORT(Y) returns a low-
dislocation ordering 7y using O(|Y|logn) quadruplet queries. Although the maximum dislocation
is bounded, 7y may still contain inversions. Therefore, we cannot rely solely on 7y to assign near-
est neighbors. One might attempt to resolve this by employing additional distance queries. Indeed,
given any low-dislocation ordering of edges (such as 7y), we can employ a modified binary search
routine, to extract the subset of edges whose weights are at most some threshold o € R using only
O(polylog n) distance queries. Nevertheless, it remains unclear how to compute approximate near-
est neighbors with few distance queries. Without additional assumptions on the spread of 3., simple
methods such as bucketing the edges in Y into groups of similar weight require too many distance
queries. Furthermore, even assuming bounded spread, since our algorithms for bounded doubling
dimension aim to use use O(n polylogn) quadruplet queries, directly applying PROB-SORT on the
entire set Y may not be feasible if Y| = w(n).

A more general complication arising from our probabilistic noise model is persistence: if our
algorithm reuses the outcome of a probabilistic quadruplet query from an earlier step (i.e., they share
randomness), the success probabilities across steps become correlated in a way that complicates the
analysis. This issue also arises in sorting with persistent errors Braverman and Mossel (2008);
Braverman et al. (2016); Geissmann et al. (2017, 2020); Klein et al. (2011), and makes this setting
significantly more challenging than one where the oracle independently returns fresh answers for
repeated queries (for example, see Davidson et al. (2014)).

In the following, we give an overview of our main techniques, focusing on the bounded doubling
dimension case, which is more technically challenging due to the stronger query complexity bounds.
The case for general metrics is simpler requiring only a subset of these techniques.

3.1. k-center OracleCluster

Henceforth, we assume that 3 has bounded doubling dimension. For subsets X,Y C V, let
CosTy"(X) := maxyex d(v,Y). For a subset W C V), the cost of the optimal k-center solution
for the vertices in W is denoted by OPT*>*(W) = minycyy, <k COSTy (W), EW =V, we
simply write OPT®°. The goal of the k-center problem is to compute a set A C V of k points such
that CosT} (V) = OPT™.

Let us consider a well known property of k-center problem that follows directly from Vapnik
and Chervonenkis (1971) (see also Har-Peled (2001)). For any pointv € V and p > 0, let B(v, p) =
{u €V |d(v,u) < p} denote the ball centered at v with radius p.

Proposition 1 (informal) Ler S C V be a random sample of O(klogn) vertices. Suppose C C S
is a k-center solution for S with cost p = COSTZ(S) such that p < O(1) - OPT>(S). Then with
high probability, p < O(1) - OPT™ and | J,cc B(v, p)| = Q(V)).

In other words, a near-optimal k-center solution for a random subset of size O (klogn) is very
likely a near-optimal solution for a large fraction of the vertices in V. Our high-level plan is to design
a recursive sampling algorithm motivated by this insight. The principle challenge lies in efficiently
identifying the set of good vertices U = |J,cc B(v, p). To meet the desired query complexities
bounds, we cannot use more than O(n polylogn) quadruplet queries and O(polylogn) distance
queries. A natural approach is to construct a nearest-neighbor data structure on C and then use it to
efficiently determine (/. However, as discussed, this poses several challenges.

Our first key idea is to transform the task of identifying the vertices in ¢/ from the probabilistic
noise model to the adversarial noise model. Under probabilistic noise, if the quadruplet oracle
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incorrectly reports that d(e1) < d(ez), for distinct edges 1, e, € &, there is no bound on the error
(the ratio d(e1)/d(e2) can be arbitrarily large). On the other hand, in the adversarial noise setting,
when the quadruplet oracle reports that d(e;) < d(ez), it is guaranteed that d(e1) < (14 pu)-d(e2),
where p1 > 0 is the adversarial noise. To perform this transformation, we require something stronger
than Proposition 1. We use the following stronger property:

Proposition 2 (informal) Ler S C V and S@ C V\SW be random samples of size ©(k log n).
Suppose C C S is a k-center solution for S with cost p = COSTEO(S(I)) such that p <
O(1) - OPT>®(SW). Define CH) C C to be the set of center-heavy points: those v € C for
which |B(v, p) N SP| = Q(logn). Let H € CH) be any maximal subset such that for every
pair of distinct hy, he € H, d(hi,he) > 2p. Then, with high probability p < O(1) - OPT* and
[Uner B(h4p) V] > (V).

Informally, the proposition says that given a near-optimal k-center solution C for SV, a maximal
well-separated subset of center-heavy vertices also serves as a near-optimal k-center solution for a
large fraction of points in ). We now present a sketch of our k-center algorithm.

Overview of ORACLE-CENTER. The algorithm works in two phases. In Phase 1, begin with the
entire vertex set )V and repeat the following steps: First, randomly select two subsets, S (1) C Y and
S@ C Y\ SW. Then, compute a k-center solution C for SM1), and use S to identify the subset of
center-heavy vertices C (H) C C. Next, extract a maximal well separated subset H C CH) _ For each
v € V, identify an approximate nearest neighbor in # and determine U = |J;,co; B(h, O(1)-p)NV.
Remove the combined sample S = S() U S®) and the set U/ from V, and iterate on the remaining
vertices.

In Phase 2, aggregate all centers computed during across the rounds along with the sampled
vertices to form a coreset S of size O(k polylogn), and compute the final k-center solution on S.2

To meet our desired query complexities, the two main challenges are: (I) computing an O(1)-
approximate k-center solution for each S() and ultimately for the coreset S, and (II) accurately
identifying the set of good vertices . The remaining steps, such as identifying C(*) from C, can be
implemented using PROB-SORT and a modified binary search routine (see FILTER in Appendix A.2).

o Identifying the good vertices. We first consider (II), the task of identifying the good vertices.

This is the part where the structural properties of H become relevant. Suppose we have computed
the set . For every h € H, fix an arbitrary subset CORE(h) C B (h, p) NS of size ©(logn) and
refer to it as the core of h. Let CORE = | J;,c4, CORE(h). Let V' = V' \ S. In Appendix B.1, we
prove the following:

Proposition 3 (informal) There exists a procedure HEAVY-ANN such that, given H, CORE, V', with
high probability returns a set of edges N C E(H, V') of size O(|V'| log n) such that for everyv € V',
there exists an edge @ € NN E(v, H) satisfying d(e) < O(1) - d(v, H). Furthermore,the procedure
makes O((n + |H|?) polylog (n)) queries to the probabilistic quadruplet oracle and no queries to
the distance oracle.

The set N enables us to recover U in a straightforward way using only a small number of
additional queries . Consequently, we shift our focus to the design of the HEAVY-ANN procedure,

2. A (weighted) set M C V is a coreset for the k-center (resp. k-median, k-means) OracleCluster, if any -
approximate solution computed on M is an O(y)-approximate solution to ) for any v > 1.

10
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which relies on two key ideas. In Appendix B.1.1, we show there exists a rich subset of queries
J C &V, H) x E(V',H), such that with high probability, for any query (e, e2) € J, we can
accurately test if d(e1) > d(e2) holds, as long as d(e1) and d(e2) are not within a factor of two. We
denote this tester by Q. Observe that Q behaves equivalently to a quadruplet oracle with adversarial
noise 1 = 1 (see (b)) on queries belonging to 7. The design of Q requires three key observations:
vertices in H,; are well-separated (2p-separated); vertices in each CORE(h) are relatively close to h
(p-close); and each CORE(h) contains 2(log n) elements (heavy).

In Appendix B.1.2, we use O to construct a nearest-neighbor data structure on ‘H and use it to
obtain the set N. The data structure is inspired by ring-separator trees Indyk and Motwani (1998);
Krauthgamer and Lee (2005); Har-Peled and Mendel (2005). At a high level, these trees exploit the
property that in doubling metrics, a set of points can be partitioned into dense inner and outer rings,
separated by a wide annulus in between. The challenge lies in constructing the tree, particularly in
identifying the separating annulus, and subsequently traversing it while using only Q. We show that
the richness of 7 along with the doubling property allows us to do these without additional distance
queries.

o Computing a local k-center solution. For task (I), the task of computing local k-center solutions

on sets of size O(k polylog n), unlike prior work, we cannot afford to explicitly compute all pairwise
distances. We need a different approach. Let X C €. We say that IT = {my,, ..., 7y, } is a low-
dislocation decomposition of X if the sets {X1, ..., X,,} form a partition of X, and each 7y, € II
is a low-dislocation ordering of X;. Informally, a low-dislocation decomposition of a set of edges
is a partition, where each component is almost sorted. In Appendix B.2, we design a procedure
BASIC-CENTER that, given a set of vertices S and a low-dislocation decomposition of (S, S),
returns a k-center solution for S without using any quadruplet queries and only O(m? polylog n)
distance queries, where m is the number of components in the decomposition. BASIC-CENTER
relies on a standard reduction of the k-center problem to finding a maximal independent set in
an unweighted “threshold” graph Hochbaum and Shmoys (1986). This incurs a factor of 2 in the
approximation. To find the correct threshold BASIC-CENTER implements a modified binary search
on each sequence in the decomposition. Since each sequence is a low-dislocation ordering as long
as the number of sequences in the decomposition is small the overall number of distance queries
remains small.

In a particular round of Phase 1 of the main algorithm, we first obtain a low-dislocation or-
dering of £(S M8 (1)) using PROB-SORT, which requires only O(k? polylogn) quadruplet oracle
queries. We then directly invoke BASIC-CENTER. In this case, the decomposition only contains a
single sequence. The more interesting case arises when computing the final solution on the core-
set S. Due to technical reasons arising from persistence, we cannot directly apply PROB-SORT to
&(S,S). Instead, the algorithm constructs a low-dislocation decomposition of &(S,S) comprising
of O(polylogn) sequences and then invokes BASIC-CENTER.

3.2. Approximate Distance Data Structure (OracleDS)

We design a data structure D for the OracleDS problem when ¥ has both bounded doubling di-
mension and bounded spread. Specifically, given an edge e, D returns a value d(e) satisfying
d(e) < d(e) < O(1) - d(e) in O(logn) time, without additional quadruplet or distance oracle
queries. Furthermore, constructing D uses O(n polylogn) quadruplet queries and O(polylogn)
distance queries, and requires O(n polylogn) storage.

11
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For any subset i/ C V, we define its diameter as diam(U) = max, yeyy d(u,v) and its sep-
aration as sep(U) = miny, ,cyy d(u,v). The spread (or aspect ratio) of X is given by $ =

UFV
diam(V)/sep(V). If $ < pgély(n) where poly(-) is some fixed polynomial, we say that ¥ has
bounded spread.

A naive approach to building D would be to obtain a low-dislocation ordering of € using
PROB-SORT and then bucketing the edges into O (log n) buckets. This would require only O(polylog n)
distance queries (as the spread is bounded) but O(n?) quadruplet queries. To achieve the desired
number of quadruplet queries, we need a more sophisticated approach.

For subsets U, W C V, we say that U is an a-cover of W if for all w € W, there exists u € U
such that d(w, u) < «. The set U is said to be S-separated if for any two distinct points u, v’ € U,
we have d(u,u’) > 3. A setU is called an («, 3)-ner of W if it is both an «-cover of W and -
separated. Our goal is to compute a collection of nets to approximate X at every scale. We construct
a data structure with the following structure.

Structure. Let ;4 = [logdiam(X)]| and A = |logsep(X)]. The data structure comprises of
a collection of vertex-subsets I' = {L£,,, £,—1,...,Lxt1, L2} with each £; C V, such that the
following properties hold:

1. For every integer i € [\, u], the set £; is a (2,2~ 1)-net of V.

2. For each v € L;, there exists a set B, C B(v, 22') M V containing v, and these sets form a
partition of V.

While several known methods Beygelzimer et al. (2006); Krauthgamer and Lee (2004); Talwar
(2004) exist to construct similar structures when all distances are accessible—including efficient
variants requiring only O(n - polylogn) distances Har-Peled and Mendel (2005)—it is not clear
how to adapt these approaches to our setting while achieving the desired query complexities. We
need a new approach. Our algorithm is based on the following observation:

Key Observation. Suppose that £; 1 has already been computed. We know that foreachv € £; 1,
there is a set B, C B(v, 2i) NV containing v, and these sets form a partition of V. Moreover, each
v € L1 acts as a 2"t -cover for its corresponding set B,,. Let ( = 29™() By the doubling
property, each 98,, can be covered by ( balls of radius 2°. For every v € £; 1, suppose we indepen-
dently sample a subset S,, C B, consisting of kK = ©(( - logn) points. We can use Proposition 1
to assert that, with high probability, for each v there exists a subset of good vertices B! C B,
satisfying |87 | > Q(|B,|) such that every vertex in B/, lies within distance 2¢ of some point in S,
The key insight is all the B/  can be computed concurrently which significantly reduces the number
of oracle queries. Specifically, one can first compute a low-dislocation ordering of |, Lim B! and
then identify all the 98! concurrently using a modified binary search requiring only O(polylogn)
distance queries.

Overview of CONSTRUCT-NET. The algorithm, computes the nets in a top-down manner, from
scale 4 to scale \. Suppose that £;, 1 has already been computed. To compute £;, the algorithm
operates in two phases.

In the Phase 1, the algorithm essentially finds a k-center coreset (with k& = ©(()) for each B,
where v € £;,1. It does this by using a recursive sampling algorithm based on Proposition 1. Each
B, is processed independently with respect to sampling; however, in every round of the recursive

12



METRIC CLUSTERING AND GRAPH OPTIMIZATION PROBLEMS USING WEAK COMPARISON ORACLES

procedure, the good vertices are identified via shared queries based on the observation above. Con-
sequently, the k-center procedures must be executed in lock-step. At the end of this phase, the
covering property is enforced.

In the Phase 2, the algorithm enforces the separation property. The challenge is to ensure that
samples from different sets B,, are not too close. To achieve this, the algorithm reduces the problem
to computing a maximal independent set over a carefully constructed graph. To prevent the graph
from growing too large, it meticulously maintains each center’s conflict set—that is, the set of other
centers that might violate the separation condition. In particular, it uses the conflict sets from level
L;+1 to infer potential conflicts and construct the graph. This step is crucial for keeping the total
number of quadruplet queries at O(n-polylog n). In both phases, the algorithm also tracks additional
information to ensure that previously issued quadruplet queries are not reused.

Once the construction is complete, the query procedure is straightforward and involves going to
each of the O(log n) scales and inspecting the conflict-sets. Overall, it requires O(log n) steps.

Applications. The data structure yields a meta-algorithm for many metric graph-optimization
problems. Given the metric X, one first builds the data structure as in Theorem 2. Then, any
standard (exact or approximation) algorithm is run, replacing every distance query with a query
to the data structure. Importantly, both the quadruplet and distance queries are used only dur-
ing the construction of the data structure. The only requirement is that the algorithm is robust to
distances being stretched by a constant factor. However, standard algorithms for many metric prob-
lems—such as k-center, k-median, and k-means clustering Gonzalez (1985); Arya et al. (2001);
Gupta and Tangwongsan (2008); Kanungo et al. (2002), minimum spanning tree Kruskal (1956),
facility location Arya et al. (2001)—are either robust or can be made robust with little effort. Thus,
for these problems on metric spaces with bounded doubling dimension and polynomially bounded
spread, there exist O(1)-approximation algorithms that use O(n - polylog n) quadruplet queries and
O(polylog n) distance queries.

Interestingly, Theorem 2 can be used even if the spread is not polynomially bounded. Let
diam = diam(V). We say a problem Prob is diameter-opt relevant if the value of the optimal
solution on ¥, denoted by Optgmb, satisfies Wl(n) -diam < Optg{ob < poly(n) - diam for some
fixed polynomial function poly(n) > 1. While classical k-clustering problems are not diameter-opt
relevant, other well-known metric problems satisfy this condition. For example, the MST prob-
lem is diameter-opt relevant and even when the spread is unbounded, our technique yields O(1)-
approximation that uses O(n - polylog n) quadruplet queries and O(polylog n) distance queries.

3.3. k-median/means OracleCluster

We focus on the k-median OracleCluster problem—though our approach applies almost verbatim
to the k-means problem. The goal of the k-median problem is to compute a set A C V of k points
such that CosTY (V) = minycy, U=k CosT}, (V). We denote the costs of the optimal k-median
solution with respect to a set W C V as OPTH(W). If W = V), we simply write OPT?.

Overview of ORACLE-MEDIAN. Our algorithm critically uses both our k-center OracleCluster
algorithm ORACLE-CENTER and the approximate distance oracle data structure CONSTRUCT-NET.
Since we integrate different independent algorithms, due to the persistence of the quadruplet oracle
we must take great care to ensure that the success probabilities of each component remain indepen-
dent. This is a non-trivial task that requires a careful design. At a high-level, or algorithm can be
divided into three parts.

13
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I. Partitioning V .  Our first step is to decompose V' into components that satisfy certain nice
properties (which we discuss below). To obtain such a partition, we first run our algorithm for the
k-center OracleCluster problem on V. The algorithm returns a set C of k centers and a value p*
such that p* < O(1) - OPT*(V). An important observation here is that the clustering costs of the
optimal k-center and k-median solutions are within an n factor of each other, i.e., OPT*(V) <
OPTY(V) < n-OPT>(V). We use C and p* to partition of V' in to components U1, . . . , Uy, W, that
satisfy the following properties:

1. The diameter of each component I; is bounded by n° - OPT?.

2. In any optimal k-median solution A4* C V), if a vertex v € U; is mapped to some a € A*,
then a cannot belong to any U; for j # .

II. Constructing a Data Structure on each Component.  Next, the algorithm constructs an
approximate distance oracle data structure D; on each U/; using CONSTRUCT-NET. In particular,
we only compute the data structure from scale u = log[n°OPT!] down to scale A = log[n—l5 .
OPTW . Naively, constructing each D; could consume too many queries since there can be up to k
components, hence, we need to be careful.

Roughly speaking, constructing a particular level of each D; is analogous to independently
solving a k-center problem (with & = O(1)) on a collection of sets, each with the same diameter.
The algorithm in Section C shows how the oracle queries can be efficiently shared between these
sets. The crucial observation is that, since the different D; are built at the same scale, queries can
not only be shared within each D; but also across different ones. This optimization is essential for
achieving the desired query bounds.

II1. Computing the Final Solution. In each partition I;, the data structure D; rounds distances
below #OPT]L to %OPT1 (contributing at most %OPT1 to the final cost) and stretches larger
distances by a constant factor. As a result, we can run a standard k-median algorithm Alg;,, on 4;,
using D; to answer distance queries, and still achieve a solution with cost O(1) - OPT!(14;). Let
A; denote the set of k vertices returned by the Alg,, on I; (using distances from D;). Assign each
vertex v € A; a weight equal to the number of vertices in Uf; that are mapped to v.

By standard properties of k-median, the union M = W U Ul-e[p] A; forms a coreset on V.
Finally, the algorithm runs Alg;, on M. It again uses the data structures D, to approximate pairwise
distances within each U{;. Furthermore, it treats distances between Uf; and U{; for i # j as oo.
Handling edges between each E(WW, W) and & (U;, W) requires some careful processing but we
skip those details here. The crux of the analysis is in showing that the different components remain

independent. This is where the choice of VV becomes particularly important.

4. Conclusion

We proposed near-optimal algorithms for clustering and other optimization problems in a metric
space having access to a quadruplet (weak) and a distance (strong) oracle. Our results improved
all recent known results in this setting. There are multiple open problems derived by our work.
First, it is worth exploring whether our data structure can be used to design a meta-algorithm for all
graph problems in metric spaces with a constant doubling dimension. Second, we plan to extend
our results to non-metric graphs, other realistic oracles, and more complicated error models.
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Appendix A. Preliminaries
A.1. Notation and Basic Definitions

Metric Spaces. Let X = (V, d) be a metric space, where d : V XV — Rx is the distance function.
The size of X refers to the cardinality of V. In this paper, we work exclusively with finite metric
spaces and assume that |V| = n throughout.

For a point v € V and radius p € Ry>¢, the ball centered at v with radius p is defined as
B(v,p) = {u €V |d(v,u) < p}. The doubling dimension of %, denoted dim(X), is the smallest
constant such that every ball of radius p € R>( can be covered by at most 2dim(%) balls of radius
p/2. A metric space X is said to have bounded doubling dimension if dim(X) < C for some fixed
constant C'.

For any subset U C V, the diameter of U is defined as diam(U/) = max,, yeys d(u, v). Similarly,
the separation of U is given by sep(U) = minu,vil/l, d(u,v). The spread, also referred to as the

aspect ratio of ¥, is defined as $ = diam(V)/sep(V). A finite metric space ¥ is said to have
bounded spread if $ < poly(n), where poly(-) denotes a fixed polynomial.

Notation. Any finite metric space can be represented as a weighted complete graph. We denote the
graph representation of ¥ by Gy, = (V, €, d), where V is the set of vertices, € = { {u,v} | u,v €
V,u # v} is the set of edges, and each edge is weighted by the distance function d. Throughout
this paper, we extensively use graph terminology.

For subsets U/,)V C V, we denote the set of edges between U/ and W by E(U, W) = {{u,w} |
u €U, weW, u+# w}. Inparticular, we have & = E(V, V). For an edge @ = {u,v} € &, we use
d(e) to denote d(u,v).

For any p € R>q and a set of edges X C &, we define X(?) = {e € X | d(e) < p} as the

subset with weight at most p. Given a subset &/ C V and a radius p € R>¢, we define B(U, p) =
Uwew B(u, p). Fora vertex v € V), the distance to a subset ¢/ is given by d(v,U) = min,cy d(v, u).
More generally, for subsets 2/, W C V, we define d(U, W) = miny,cys wew d(u, w).
Net. For subsets U, W C V), we say that I is an a-cover of W if for all w € W, there exists
u € U such that d(w,u) < «. The set U is said to be [-separated if for any two distinct points
u,u’ € U, we have d(u,u') > . A setU is called an (v, 3)-net of W if it is both an a-cover of W
and [-separated.

k-Clustering. For two subsets of vertices U, W C V, let F;(WV) denote a clustering cost function
that measures the cost of selecting centers ¢/ with respect to the vertices in WW. Let

OPTE(W) = min Fy(W)
UCY, [U|=k
be the cost of the optimum clustering with respect to V.
We consider the three most common clustering cost functions: the k-center, k-median, and
k-means costs, defined respectively as

CosTy (W) = max d(w,U), Costy(W) = Y d(w,U), and CoSTZ(W)= > d*(w,U).
we
weWw wew

We denote the costs of the optimal k-center, k-median, and k-means clustering with respect to
W as OPT®(W), OPTY(W), and OPT?(W), respectively. If W = V, we simply write OPT,
OPT!, OPT>.
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A.2. Ordering sets of edges

For any edge set X C &, we always use my to denote an ordered sequence over X, when appropriate,
my may also be regarded as a set. Our algorithms will often need to (approximately) sort a set of
edges (by distance) using the quadruplet oracle. We will use two notions of approximate sorting.

A.2.1. By DISLOCATION

For an edge @ € X , let RANKy(e) denote the position of @ among the edges in X in perfectly
sorted order (by distance). For an ordered sequence of edges 7y, and an edge e € X, RANK, (&)
denotes the index of e in the sequence my. The dislocation of an edge @ € X with respect to the
ordering 7y is defined as |RANK. (e) — RANKx(e)|. A sequence of edges my has a maximum
dislocation D if, for every e € X, the condition |RANK ., (e) — RANKx(e)| < D holds, where D
is an integer. Observe that if 7y has maximum dislocation D, for any subsequence m T vy, the
maximum dislocation of 7 is bounded by D.

Dislocation bound. For any finite metric ¥ = (V, d), define Dy; := clog|V|, where ¢ > lisa
fixed constant (independent of X.)

Low-dislocation ordering. Let X C & be any set of edges, and let 7y be an ordering of X. We say
my is a low-dislocation ordering if its maximum dislocation is at most Ds..

Low-dislocation decomposition. Let X C € and let X1, ..., X,, be a partition of X. Suppose for
each ¢ we have a low-dislocation ordering 7y,. The collection

II = {mx,,...,mx,,}

is called a low-dislocation decomposition of X.
We will use the following lemma to efficiently compute a low-dislocation ordering.

Lemma3 Ler ¥ = (V,d) be a metric with size |V| = n, and let E = E(V, V) be the set of all
edges. Let Q:&8x¢&— {YES,NO} be a probabilistic quadruplet oracle with noise ¢ € [0, 1—16}
There exists an algorithm PROB-SORT such that, for any subset X C & of m edges, with probability
1-— ﬁ, PROB-SORT(X) returns a low dislocation ordering m, while using O(max(m,n)logn)

queries to Q.

Proof Theorem 9 of Geissmann et al. (2019) gives an algorithm RIFFLE-SORT that given a set of
objects of size n and a noisy comparison oracle that for each pair of objects decides which is larger,
independently and persistently, with error probability at most ¢ € [0,1/16], can order them such
that the maximum dislocation of any element is at most ¢ log n for some constant ¢, with probability
1 - ﬁ. This requires O(nlogn) comparison oracle queries. The comparison oracle here is
equivalent to the quadruplet oracle when each object is an edge.

Thus, given a set X C & of size m , RIFFLE-SORT gives an ordering with max dislocation
clogm with probability 1 — 1/mP1). Since X is a set of edges, |X| = m < n?. Therefore,
clogm < 2clogn. Recall that by definition Dy, = O(logn). We now fix the hidden constant so
that Dy, > 2clogn, where c is the constant in the RIFFLE-SORT guarantee. With this choice, the
ordering output by RIFFLE-SORT has dislocation at most Ds; with probability at least 1 — 1/m°(1).

Since we want a high probability guarantee in terms of n, we do the following: If m < n, we
augment the set with n —m artificial elements so that the total number of objects is at least n. These
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artificial elements can be assumed to have ranks larger than other edges, and we can assume that all
queries involving these artificial elements are answered accurately and consistently. Now applying
Theorem 9, we get that given m edges, we can obtain a low-dislocation ordering with probability
1 — 1/n°0 requiring at most O(max(m, n) log n) quadruplet oracle queries. [

Given a low-dislocation ordering, we will also need to perform the following operations: (i)
filter out edges with weight below a certain threshold, and (ii) partition the edges into buckets based
on weight.

Lemmad4 Let Y = (V,d) be a metric space with size |V| = n. Let X C E(V, V) be a subset of m
edges and let Ty be a a low-dislocation ordering of X.

1. There exists a procedure FILTER such that, given 7y and p > 0, FILTER(my, p) returns the
subset X(P) C X using O(log? n) distance queries.

2. There exists a procedure BUCKET such that given a,b € Z>qo with a < band o > 1,
BUCKET(7y, a, b, o) returns the following set of pairs

{(e,o") |e € Xand i = min{j € {a,...,b} | d(e) <ol}}.

using O((b — a) - log? n) distance queries.

Proof Since 7y is a low—dislocation ordering, its maximum dislocation is Dy, = O(logn), so for
every edge @ € X we have [RANKy(e) — RANK, (e)| < Dsx.

The routine FILTER (7, p) performs a modified binary search. Fix an index ¢ under considera-
tion and let e be the unique edge with RANKy(e) = i. Define the search window

Wi:[i—’Dz,i+'D§)]ﬂ[1,n].

Because of the dislocation bound, e lies somewhere in W;. Moreover, for any ¢’ € X with
RANK, (¢) < min Wj (resp. > max W;) we have d(e’) < d(e) (resp. > d(e)). There are exactly
(1—1) — (min W;—1) = i—min W; edges in the subsequence 7y [min W, ..., max W;] whose dis-
tance is < d(e) therefore the (i—min 1W;+1)-th smallest edge by weight in 7y [min W;, . . ., max W}]
is precisely e.

FILTER then compares p with d(e) and proceeds as in standard binary search. Note that since,
weights of edges in the window are known we can identify the ones with weight less than p and
recurse. Each iteration inspects O(Dy) = O(logn) edges and eliminates a constant fraction of the
sequence, so the search completes in O(logn) steps. The total number of distance-oracle calls is
O(Ds logn) = O(log? n), and no quadruplet queries are required.

It is straightforward to see that BUCKET (7, a, b, o) can be computed using (b — a + 1) invoca-
tions of FILTER with p = ¢, 0%t!, ... o

|
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A.2.2. BY SCALE

Although we primarily work with the probabilistic quadruplet oracle, some of our algorithms require
a procedure to order edges using the adversarial quadruplet oracle. In such cases, we use an alternate
notion of approximate sorting. For v > 1, my is a-sorted if for any pair i, j € [m] such that i < j,
it holds that d(my[i]) < a- d(mx[j]). We use the following lemma to obtain O(1)-sorted sequences.

Lemma5 LetY = (V,d) be a metric space with size |V| = n, and let & = E(V, V) be the set of all
edges. Let Q : € x & — {0, 1} be an adversarial quadruplet oracle with noise . > 0. There exists
an algorithm ADV-SORT such that, for any subset X C & of m edges, with probability 1 — O(l)’
ADV-SORT(X) outputs a (1 + p)?-sorted sequence T using O(m - polylogn) queries to Q.

Proof Let QUICK-SORT(-) denote an implementation of the classic randomized Quick Sort algo-
rithm that recursively partitions the input around a randomly chosen pivot and then independently
sorts each resulting subsequence. Let T': Z>o — Zx>0 be a function defined by 7'(0) = 0, T'(1) = 0,
and for m > 2, T(m) = 2 (m + 1) H,, — 4m, where H,, = >, 1 denotes the mn-th harmonic
number. Note that H,,, = O(log m) for m > 1.

The algorithm ADV-SORT(-) is essentially an implementation of QUICK-SORT(X) with a restart
strategy; that is, given X, run QUICK-SORT(X) and monitor its number of steps. If it exceeds T'(m),
abort and restart. This is repeated O(logn) times.

The proof proceeds similarly to the analysis in Acharya et al. (2018), which deals with ad-
versarial comparison oracles subject to additive error. Proving correctness is straightforward. Let
Ty = QUICK-SORT(X). Consider two arbitrary edges @1, ez € X. If RANK, (1) < RANK, (@2),
then there exists a pivot @3 such that Q(el,eg) = YES and Q(ez,e3) = No. It follows that
d(er) < (1+ p)?d(es), so my is (1 + u)?-sorted.

We now bound the number of oracle queries. For a fixed adversarial quadruplet oracle Q, for
any Y C &, let E(Y) denote the expected number of queries made by QUICK-SORT(Y). Define

U(m) = max E(Y).
Y|<m

Thus, ¥(m) upper bounds the expected query complexity of QUICK-SORT on any subset of m
edges (and in particular on X). We prove by strong induction on m that ¥(m) < T'(m).
We proceed by bounding E(Y) for an arbitrary subset Y C & of size m. For each e € Y, define

L(e) ={e' €Y | Q(e/,e) = YES} and Mife) ={e' €Y | Q(e,e') = No}.

Consider the following set of inequalities,

E(Y) < (m—1)+ 5 > (E(L(e)) +E(M(e)))

ecy

< (m = (U(L(e)]) + ¥ (|M(e)]))
ecY

<(m=1)+ %Y (T(L(e)]) + T(IM(e)])).
e€y

The first inequality comes from the standard analysis of Quick Sort. The second substitutes the
definition of W, and the third applies the induction hypothesis.
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Observe that forevery e € Y we have 0 < |L(e)|, |M(e)| < m—1 with |L(e)|+|M(e)| = m—1,
and that .y |[L(e)| = Doy [M(e)| = ('3). Therefore, we can bound E(Y) by the optimal value
of the following convex optimization problem:

EY) < max  ((m—1)+ = 3 (Llae) + T(m—1-2)).

0<ze<m-—1 m =y
e
Zee‘d Ie=(7§>

By convexity of T'(-), the maximum must occur at a corner, corresponding to a permutation of
{0,...,m — 1}. This implies

=

m—

E(Y) < (m— 1)+ > (T() + T(m —i)).

1=0

Since Y C & was arbitrary, we have U(m) < (m—1)+ L PO (T(z) +T(m— z)) This is well
known as the classic Quick Sort recurrence (see McDiarmid and Hayward (1996)) and is solved by
T'(m) as defined above. This completes the induction.

By Markov’s inequality, the probability that QUICK-SORT(X) takes more than, say, 100 - T'(m)
steps is at most —1=. Thus, with high probability, ADV-SORT(-) terminates after O(logn) restarts,

100"
resulting in a total cost of O(m polylog n) quadruplet oracle queries.

Appendix B. k-center OracleCluster problem

In this section, we design an O(1)-approximation algorithm for the k-center problem. For met-
ric spaces with bounded doubling dimension, our algorithm uses O((n + k?) polylog n) quadruplet
queries and O(polylog n) distance queries. For general metrics, the algorithm requires O (nk polylog n)
quadruplet queries and O(polylogn) distance queries. We refer the reader to Section 3.1 for a
detailed overview of our approach. Our presentation focuses on the case where the metric has
bounded doubling dimension. We begin by introducing two key subroutines, HEAVY-ANN(-) and
BASIC-CENTER(-), in Sections B.1 and B.2, respectively. These procedures are essential build-
ing blocks for our main algorithm. In Section B.3, we present our full algorithm for metrics with
bounded doubling dimension. Finally, in Section B.4, we describe how to extend our approach to
general metrics.

B.1. Approximate Nearest Neighbors on Heavy Vertices

Let ¥ = (V,d) be a finite metric space of size |V| = n. Let H,CORE C V and p € R5g be a
positive real number. Let Aga = wq - logn, where wy > 1 is a constant.

We say H is a (p, 2p)-heavy net of CORE if the following conditions hold:

(i) Net: H is a (p, 2p)-net of CORE.

(ii) Heavy: For every h € H, there exists a subset CORE(h) C B(h, p) N CORE of size Aga. We
also assume CORE(h) is explicitly identified for every h € H.
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In this section, we prove the following lemma.

Lemma 6 Ler X = (V,d) be a finite metric space of size |V| = n with bounded doubling dimen-
sion. Let H,CORE, V' C V be pairwise disjoint, and let p > 0 be a parameter such that H forms a
(p, 2p)-heavy net of CORE. There exists a procedure HEAVY-ANN such that, with probability at least
1-— ﬁ HEAVY-ANN(H, CORE, V') outputs a set N C E(H, V') of size O(|V'|logn) satisfying
the following property:

For every v € V', there exists an edge @ € N N E(v, H) such that d(e) < Cya - d(v,H), where
Cha > 1 is a constant. Moreover; the procedure makes O((n + |H|?) polylog (n)) queries to the

probabilistic quadruplet oracle and no queries to the distance oracle.

We prove the lemma in two steps. First, in Section B.1.1, we design a tester that can emulate
an adversarial quadruplet oracle on a rich subset of queries 7 C E(V,H) x E(V, H) using a small
number of calls to the probabilistic quadruplet oracle. Next, in Section B.1.2, we use the emulated
adversarial oracle to design a data structure on H for computing the desired edge set N C &(H, V).

B.1.1. EMULATING THE ADVERSARIAL QUADRUPLET ORACLE USING PROBABILISTIC
QUERIES

Our goal is to design a fester (a function)

Q: &V UH, M) x &(H,H) — {YES,NO},
such that for any v € V' U H and any hq, ho, h3 € H,
d(hz, h3)

2 ey
NO if d(v, hl) > 2- d(hg, hg)

Q({U, hl}’ {h2, hg}) = YES if d(v’ hl) <

Observe that tester O behaves consistently with an adversarial quadruplet oracle (see (b)), with
an error tolerance of y1 < 1, on the subset of queries 7 = E(V' UH,H) x E(H,H). The following
procedure emulates a query to Q using a small number of queries to Q.

Emulating the Tester. For any query ({v, 1}, {h2, h3}) € J, compute

COUNT= Y 1 {Q({U,c}, {ha, h3}) = YES} :

CcECORE(h1)

where 1{-} is the indicator function. Output YES if COUNT > %; otherwise, output NO.

We prove the following lemma.

Lemma 7 For every query ({v, h1}, {he, hs}) € E(V' UH, H) x E(H,H), with probability 1 —

ﬁ, the emulation procedure’s output satisfies conditions (1). Furthermore, evaluating a query

requires O(polylogn) calls to the probabilistic quadruplet oracle Q.
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Proof We consider two cases. Suppose COUNT > %. In this case, the tester outputs YES, which
could only be incorrect if d(v, h1) > 2 - d(ha, hg). However, if d(v,h1) > 2 - d(hs, h3), then for
every ¢ € CORE(hq), we have

d(v,c) > d(v,hy) —d(hi,c)

> d(’U, hl) —p

> 2. d(hg,hg) —p

> 2 d(hy, h3) — d(hz hs) (since 2p < d(hg, h3))
> % ’ d(h27 h3)

> d(hg, hs).

Thus, in this case, every YES returned by Q must be incorrect, as d(v, ¢) > d(ha, h3) for each
¢ € CORE(h). However, since COUNT > % led to a YES response, at least half of the responses
by Q are YES.

Next, suppose COUNT < %. In this case, the tester outputs NO, and the result could only be

incorrect if d(v, hy) < %. If d(v,hy) < M, then for every ¢ € CORE(h1), we have

d(v,c) (v, h1) + d(h1,c)
(v,h1) +p

dhahs) | dhahs) (gince p <

d(ha, h3).

<d
<d

d(h2,hs3)
< zhs))
<

Thus, in this case, d(v,c) < d(hg, h3), meaning every NO returned by Q must be incorrect.
However, since COUNT < AgA , the majority of the responses are NO.

For any given query, Chernoff bounds imply that the probability of the majority of Q responses
being incorrect is exponentially small in Aga = wy - logn. Specifically, this failure event occurs
with probability at most e~ (AHA) — ﬁ, for an appropriate choice of wj. |

Since the total number of queries to Q is bounded by | 7| < n*, and by Lemma 7 the emulation
procedure satisfies specification (1) for every query with high probability.

B.1.2. THE PROCEDURE HEAVY-ANN

We now use Q from the previous section to design the procedure HEAVY-ANN(H,)V’, CORE, p) and
prove Lemma 6. Throughout this section, we assume every query to Q satisfies the specification (1).

First, we show how to design a ring-separator data structure Krauthgamer and Lee (2004); Har-
Peled and Mendel (2005) on H using only Q. Next, we show that for every vertex v € ', one can
query the data structure (again, using only Q) to obtain a set N, C & (v, M) consisting of O(log n)
edges such that there exists at least one edge e € N, with d(e) < Cua - d(v, H).

For simplicity, in the following we only focus on the asymptotic query complexity, however,
individual constants and other performance parameters can also be improved.

Rank-Balls. Recall that the tester Q behaves consistently with an adversarial quadruplet oracle
with noise 1« = 1 on the subset of queries E(V' UM, H) x E(H,H). Hence, we can use it to apply
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the routine ADV-SORT(-) from Lemma 5 on the set &' = &(H, H). Let mes = ADV-SORT(&’) denote
the resulting 4-sorted sequence, satisfying ﬂ%[p} < mer[q] < 4mer[r] for all indices p < ¢ < r. For

a subset H* C H, a vertex h € H* and an edge e € &’, define
B'(h,e,H*) = {h' € H* |RANK,, ({h,h'}) < RANKq,, (e)}.

Given e/, the set B'(h, e, H*) is computable directly by inspection, requiring no additional oracle
queries.

Constructing the Tree. We first construct a tree-based data structure with fanout 2. Given a node
of the tree along with a subset of vertices from H that belong in the current node (the entire set H
is stored to the root of our tree-based data structure), we describe what information we store in the
node and how we construct its two children. For simplicity, we describe the process for a node ¢ of
the tree. The construction follows equivalently for the entire tree by recursion.

Let ¢ be the current node we process and let H; C H be the vertices stored in node ¢. Consider
the submetric X’ = (Hy,d). It is a standard fact that dim(X’) < 2dim(X). Let v = 24m("), Let

m = 2%0, where N = |H,| is the number of points stored in the node.

(1) We begin by computing

h,h') = ar min RANK., ({h, W'}) | |B'(h, {h,h'}, Hs)| = m} . 2
() =g | min (RN (1) |80 (1) M0 =}
In other words, (h, h') is the pair in #; x H; that minimizes RANK,, ({h, h'}) among all pairs
(h,h') such that [B'(h,{h, '}, Hs)| = m. The pair (h,h') can be computed by inspection
without performing any oracle query.

(ii) Set h = vy and order the points in #; as {v1,va,..., vy} by increasing rank in mg/, with
vm = h'. Define j = v2°m+ 1. By definition, B’ (vy, {v1, v; }, H¢) contains exactly YOm+1
vertices.

(iii) Next, identify the edge ey € E(Hy, H) with the minimum rank in 7g/ such that there exists a
set S C H, of size | S| < !V satistying,

B (v1, {v1, 05}, He) C | B'(h, e, Ho).
hes
The edge @2 can also be computed without performing any oracle query. We store v1, vy, v, @2
in the node ¢ for use in the search process.

(iv) Finally, partition the vertices in H; into two sets, L; and R;, where the “left” set is defined as
L; = {v1,...,v;} and the "right” set as Ry = {vys, Um+1,...,vx}. Construct ¢, tp as the
two children of ¢ and recursively apply the construction to ¢7, with the set of heavy vertices
L; and ti with the set of heavy vertices R; to form a tree structure. If ¢ is a leaf node we set
tr, =tp = 0.

Computing the Map. To compute the desired map N C &(V', H), repeat the following for each
v € V': Initially, set N,, as an empty set and ¢ as the root of the constructed tree. Then call the

procedure Query (v, Ny, t):
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(1) Ift = 0, return N.
(i) Add the edges (s,v1), (s,vy,), and (s, v;) to N.
(iii) Query Q({v1, s},e2) in node ¢:

* If YES, Query(s, N, tr).
* If NO, Query(s, N, tr).

After considering every vertex v € V', return N = | Ny.

vey’

Analysis. Consider an edge @ € &’. Since 7/ is 4-sorted, for any €', ¢” € &' with d(e”) > 4-d(e)
and d(e) > 4 - d(’), it holds that RANK,, (€”) > RANKr,, (€) > RANKq,, (e'). Consequently, for

any subset 1* C H, h € H*, and e € €', B(h, %) N H* C B/ (h,e, H*) C B(h, 4d(e)) N H*.

Lemma 8 Let ¢ be a fixed node of the constructed tree. Recall that in node t we store vi, Uy, vj,
and €. Define the following distances: r1 = d(vi, vy,), 12 = d(@2), 73 = d(v1, v;). It holds that

64-1r <1re < a
Proof We first show the inequality 72 < 5. By the doubling property, any ball of radius r in (#;, d)
can be covered by 7 balls of radius f5;. Since B'(vy, {v1,v;}, He) C B(v,4r3) N Hy, there
exists an edge & € &(Hy, H¢) such B’ (vy, {v1,v;}, Ht) can be covered by at most 19 balls of radius

d(e) < 1407"234 = 525. Recall that ey € E(Hy, H;) is the minimum-ranked edge in 7¢/ for which there

exists a set S C H; with [ S| < 410 such that B/ (v1, {v1,v;}, He) € Ujeg B’ (hy €2, Hy).
Since me/ is 4-sorted, it follows that

3

T'2=d( )<4d(é)_64

Next, we show that 7o > 64 - r;. We first argue that there exists an h' € S such that, every
subset S” C H; of size |S"| < 4!V satisfies B'(h/, ez, Hs) & Uies B'(h, {v1, v }, Ht). Assume
that the argument does not hold. Then, for every h € S there exists a subset S; C H; of size [S;| <

0 such that B/(h, ey, H;) C Ufesﬁ B, {v1,vm}, Hi). We set §* = ;g5 with [S*] <

~20_ Then, it holds that B/ (vy, {vl,v]},’Ht) C Ujes B (h, ez, He) € Uyegs B (4 {v1, vm }, Ho).
Smce B’ (v1, {v1,v;}, He) € Upege B'(4 {v1, om}, He), 1B/ (h, {v1, 05}, He)| = +*°m + 1, and
|S*| < %0, there exists h € S* such that |8 (h, {v1, vy, }, H¢)| > m. Hence, there exists h’ € H;
such that RANKr,, ({h,h'}) < RANKq,, ({v1, v }) with [B'(h, {h,h'}, H)| = m contradicting
the optimality of (2).

Consider such an i’ € S. By the definition of 4’ and the fact that B (h, TNH: C B/ (h, {v1,vm}, He)
for every h € H;, we have that the points in B’ (k’, @2, H;) cannot be covered by ~1° balls of radius
L. Since B’ (I, @2, Hi) € B(K',4-r2) N"H; we have that there exists a ball (i.e., B(h', 4-r2) NHy)
of radius 4 - o that cannot be covered by vV balls of radius 7. By the definition of the doubling
dimension, this implies that fogi > 71, and therefore ro > 64 - rl

|
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Lemma 9 Foreveryv € V', there exists an edge @ € NNE(v, H) such that d(e) < O(1)-d(v, H).

Proof Let v € V' be a vertex. Let ¢ be the traversed node (initially the root) during the construction
of Ny. Define r; = d(v1, vy ), 72 = d(e2), and 3 = d(v1,v;), Where vy, vy, vj, @ are stored in
node ¢. By Lemma 7, if the search proceeds to t1, then d(vy,s) < 2rg; if it proceeds to ¢, then
d(vi,s) > 3.

For the vertex v on node ¢, assume that the search is directed to the left node ¢, but its ac-
tual nearest neighbor (in #), denoted by NN (v), is not in ¢z, then RANKy,, ({v1, NNy (v)}) >
RANKq,, ({v1,v;}), implying d(vi, NNy (v)) > 5. By the triangle inequality, this further implies

d(v, NNy (v)) > %3 — 9y > 141,

contradicting d(vy,v) < 2rs.

Conversely, if the search is directed to the right node tr and its actual nearest neighbor is not in
tr, then d(vi,v) > 3 and RANKy,, (NN3(v)) < RANKq,, (vm,). Therefore, d(v1, NN (v)) < 4ry.
By the triangle inequality, this further implies

d(v, NNy (v)) > %2 — 4.

Since r9 > 64rq, it follows that

However, the node tr contains v,,,, and we have

d(v, vm) < d(v, NNy (v)) + d(NNy (), v1) + d(v1,vm) < d(v,NNy(v)) + %2

Thus, if our algorithm proceeds with the left node ¢y, then it always makes the correct decision. If
the nearest neighbor lies in ¢;, but our algorithm traverses the right node ¢, then we have that v,,
(stored in node t) is an O(1)-approximate nearest neighbor of v. Putting everything together, we
conclude that for each v € V', the set N contains an O(1)-approximate nearest neighbor of v after
the search completes. This proves Lemma 6. |

Lemma 10 HEAVY-ANN performs O((n + |H|2)polylog n) queries to the tester Q.

Proof First, the algorithm runs ADV-SORT(E(H,H)) using the tester Q. From Lemma 5 and
Lemma B.1.1, this subroutine performs O((n + |H|*)polylog n) queries to the quadruplet oracle.
The rest of the construction of the ring separator does not call any other oracle. For constructing the
map N, in each level of the tree we run one query to Q using O(polylog n) queries to the quadruplet
oracle.

. H
Since m = 2]

= gy, We have,

1
max(|Lil, | Rel) < (1 - w) ).

By applying this inequality in every node of the tree recursively, we get that the tree depth is bounded
by O(logn). Overall, the HEAVY-ANN performs O(n polylog n) queries to the quadruplet oracle. ll

Putting Lemmas 7, 9 and 10 together implies Lemma 6.
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B.2. The procedure BASIC-CENTER

In this section, we prove the following lemma.

Lemma 11 Let ¥ be a finite metric space ¥ = (V, d) with size |V| = n. There exists an algorithm
BASIC-CENTER such that, givenUU C V and a low-dislocation decomposition 11 = {7'('8/1, o Ter h
where &' = E(U,U), BASIC-CENTER(U, I1, k) returns a set T of size k such that COSTF (U) <
2 - OPT*™(U). The algorithm performs O(m? - polylogn) calls to the distance oracle and no
queries to the quadruplet oracle.

Using Lemma 11, it is straightforward to obtain an O(1)-approximate k-center solution that
uses O(n? polylogn) quadruplet queries and O(polylogn) distance queries. To achieve this, set
IT = {m¢}, where m¢ = PROB-SORT(E), and apply Lemma 11.

Next, we describe the procedure BASIC-CENTER(-), but before doing so, we discuss how to perform
certain elementary operations.

e Computing a threshold edge set. Given II, the threshold edge-set &’ (@) can be computed as
follows. For each Te! € 1L, call FILTER(WEQ , ) and take the union of the resulting edges, i.e.,
(Ui~ FILTER(7g,, «). Since every sequence in II has a dislocation of at most Dy;, Lemma 4

implies that for each 1, E’EO‘) = FILTER(mg/, ). Because |J; &; = €', our claim follows.

This computation requires O(|II| polylogn) distance queries and no additional quadruplet
queries.

« Testing k-Coverability. For any o € R, define the graph G(®) = (i, £"(*)). The square
of G(®), denoted (@), is the graph formed by adding an edge between any pair of vertices
u,v € U if and only if there exists a path of length at most 2 between « and v in G(®). We
say that GG (@) is k-coverable if the following greedy covering algorithm returns a set of size
at most k.

Greedy-Cover: Initialize 7 as an empty set. Then, while G is not empty, select a vertex x
from G(®, add z to Z, and delete x along with all its neighboring vertices from G(®) . Notice
that this greedy algorithm computes a maximal independent set of G(@) . Furthermore, this
computation does not require any oracle query.

We are now ready to describe the algorithm BASIC-CENTER(U, 11, k).
Algorithm BASIC-CENTER. The algorithm works in two steps.

(i) For each g, € 11, find @] = arg mingcer <d(e) | G(d(e)) is k:—coverable).

For a particular 4, €}, can be computed as follows: Perform a binary search over the indices
of me,. For each midpoint index j, use the distance oracle to compute exact distances within
the interval [j — Dy, j + Dx)] (see proof of Lemma 4 for more details) to accurately locate the

edge e corresponding to position j. Then, compute the threshold edge set 8'(d(e)) and check

whether G\%®)) is k-coverable using the previously defined procedures.
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(i) Lete’ = argmin{e],...,e),} denote the minimum weight edge found across all sequences
in the previous step. Return d(e’) as the cost, along with the set of vertices Z C V, which

A~ /
forms the maximal independent set of G (d(e )) , as the centers.

Analysis. Let * = argminece (d(e) | Gle)) js k-coverable). It is well-known Hochbaum and
Shmoys (1986) that G(4¢")) is coverable and that a maximal independent set Z* of Gde) provides
a 2-approximation, i.e., COSTS (U) < 2 - OPT*°(U). Therefore, if we can show that ¢’ = e*, the
result follows.

In fact, it suffices to show that, for each sequence &/, we find the minimum edge e} such that
Gde)) is coverable. Since each sequence 7¢, has dislocation at most Dy;, a modified binary search
with exact distance calculations over [j — Dy, j + Dy)] at each index behaves identically to standard
binary search, ensuring e; is found for each 7.

Overall, the binary searches across all sequences require O(|II| - polylogn) steps. Therefore,
the total number of distance queries—including those needed to compute the threshold edge sets is
O(|I1]? - polylog n). This completes the proof of Lemma 11.

B.3. The procedure ORACLE-CENTER

Let ¥ = (V,d) be a finite metric space with bounded doubling dimension and size |V| = n. In
this section, we design an algorithm that computes a subset A C V of size |A| = k such that
CosTX (V) < O(1) - OPT®, while using O((n + k?)polylogn) queries to the quadruplet oracle
and O(polylog n) queries to the distance oracle.

The algorithm critically relies on the procedures HEAVY-ANN (Section B.1), BASIC-CENTER
(Section B.2), FILTER, and PROB-SORT (Section A). In particular, it does not directly make any
oracle queries (quadruplet or distance) but accesses them exclusively through these procedures.

To improve readability, while describing the algorithm we assume that all procedures invoked
by the algorithm function as specified. In the analysis, we prove that this holds with high probability.

Algorithm ORACLE-CENTER. The algorithm operates in two phases. In Phase 1, it computes a
subset S C V that serves as a coreset for k-center on X.. In Phase 2, it computes a low-dislocation
ordered decomposition of £(S, S) and then uses BASIC-CENTER to obtain the final solution.

» Phase 1. This phase proceeds in rounds. We start with an initial set of vertices V; = V. In
each round i, we process the current vertex set V;, and continue until |V;| < 200 - k logn,
at which point we transition to the next phase. If the number of rounds exceeds 7, where
7 = O(polylog n), the algorithm aborts and returns no solution.

Next, we describe the procedure for a fixed round i. For each step, we first state the objective
of the step in bold, and then describe how to execute it using only the predefined subroutines.

(i) Sample two disjoint subsets SZ-(I) C V; and 81(2) CV; \Si(l), with \SZ-(I)| = ]Si(g)\ =
wo - klogn, where wy > 1 is a suitable constant. Let S; denote their union, i.e.,

S =8 us?

[ 7
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(i)) Compute an approximate k-center solution C; for SZ.(l) such that p; = COSTg; (Si(l)) <
2. 0PT>(SM).

Let X; = E(SZ-(I), S -(1)) represent all edges between vertices in 81-(1). Compute a low-

2

dislocation ordering 7y, using PROB-SORT(X;). Compute (C;, p;) = BASIC—CENTER(SZO), {mx, })-

(iii) Define a vertex v € C; as center-heavy if |B(v,3 - p;) N Sl»(2)| > Aga, where Aga =
©(log n). Identify CZ-(H) C C;, the set of center-heavy vertices. Compute #; C CZ-(H),
a (6p;, 6p;)-net of Ci(H).

Identifying center-heavy vertices CZ-(H) C (it LetY; = E(C; U 82(2)781.(2)) represent
the edges between C; U S£2) and 81(2). Compute a low-dislocation ordering 7y, using
PROB-SORT(Y;). Next, compute the subset ‘5}53’”) by calling FILTER(my,, 3p;). Inspect
Hggp ) to identify the subset of center-heavy vertices Cz-(H) .

Computing H; C Ci(H): Compute the subset of edges DCEG” i) by calling FILTER (7y,, 6;).

Construct the graph G = (V’/, E’), where the vertex set V' = CZ-(H) and edge set is
E' = 3C§6p 2 E(CZ-(H) , Ci(H)). Finally, set #; to be a maximal independent set of the G

(iv) Compute U; = {v € V; \ S; | d(v,H;) < O(1) - pi}.

(a) Compute an edge set N; C E(V; \ S;, H;) such that for any v € V; \ S, there
exists an edge ¢ € N; N &(v, H;) satisfying d(e) < Cya - d(v,H;), where
Cua = O(1).

To perform this step, we use the HEAVY-ANN(-) procedure. We need to ensure that
the input to HEAVY-ANN(+) satisfies the conditions in Section B.1.

First, for each h € H;, define CORE;(h) C B(v,3p;) N 81-(2) to be an arbitrary
subset of size Apa, where Agy = O(logn) is defined in Section B.1. Compute
each CORE;(h) by inspecting ‘dl(-sp V) Define CORE; = Unen, CORE;(h). Compute
N; = HEAVY-ANN(#;,V; \ S;, CORE;). Observe that #; is a (3p;, 6p;)-net of
CORE. Therefore, it directly follows from Lemma 6, that for every v € V; \ S,
there exists an edge € € N N E(v, H;) such that d(e) < Cya - d(v, H).

(b) Use N; to identify L4;.

For each edge {v,h} € N;, where v € V; \ S; and h € H;, replace it with an
edge {v, c}, where ¢ € CORE;(h) is picked arbitrarily. Let N; be the modified edge
set.> Next, compute a low-dislocation ordering 75, = PROB-SORT(N;). Finally,

compute JA\IEO‘) = FILTER(75 , ¢), where a = 18 - Cya - p;. SetUy = {v € e| e €
N

1

(v) Set V11 =V;\ (U; US;) and proceed to the next round.

3. This is done for technical reasons arising due to the persistence of the quadruplet oracle.

34



METRIC CLUSTERING AND GRAPH OPTIMIZATION PROBLEMS USING WEAK COMPARISON ORACLES

e Phase 2. Let i* denote thg index of the final round of PhAase 1. 'LetAS’Z-* = V;+. For each
round ¢ of Phase 1, define S; = C; U (Si(z) \ CORE;). Let S = (J;_; ;. In the analysis, we
show that S is a coreset of V.

Construct the edge set X;« = €(V;«, V;+) and compute the sorted sequence 7y, = PROB-SORT(X;+ ).
Let

Zi=2¢& SZ,S\USJ
j=1

capture edges between S; from round ¢ and the remaining vertices in S not included in previ-
ous rounds.

For each round 7 € [1,7* — 1], compute the sorted edge sequence 7z, = PROB-SORT(Z;).

Consider the collection of edge sequences II = {7y ,my,,mz,,..., 7y, } generated across
all rounds. Let II" = {#. 7}, , @, ..., 7\ } be obtained by removing edges that do not
i)Cl 91 Z,l xl*

belong to &(S,S) from each edge sequence in II. Observe that [II| = O(polylogn) and
III'| = O(polylogn). In the analysis we show that II" is a low-dislocation ordered decom-
position (see Section B.2) of &(S,S). To obtain the final solution we compute (A, p*) =
BASIC-CENTER(S, IT).

B.3.1. ANALYSIS OF ORACLE-CENTER

We divide the analysis into three parts. In Part 1, we prove that, with high probability, every pro-
cedure invoked by the algorithm operates correctly. While in standard algorithm design this is
straightforward as different components typically use independent randomness, in our setting we
must ensure that subroutines do not share randomness by relying on the same quadruplet query
response; otherwise, we cannot invoke the correctness of each subroutine directly. In Part 2, we
establish that in each round ¢ of Phase 1, the sample S; satisfies certain properties that are essential
both for invoking HEAVY-ANN(+) and for ensuring that a constant fraction of the vertices is elimi-
nated in each round. Finally, in Part 3, by combining the correctness guarantees from Part 1 with
the properties from Part 2, we prove that, with high probability, our algorithm returns an O(1)-
approximate solution using O((n + k?)polylogn) quadruplet queries and O(polylogn) distance
queries.

Part 1: Proving Correctness of Operations. We consider each invocation of a subroutine as
a single operation. Let the function T" : Z>¢y — Zx>1 provide an upper bound on the number of
operations executed by the algorithm.

By design, we have T'(n) = O(polylogn). This follows from the fact that Phase 1 con-
sists of at most 7 = O(polylog n) rounds, where each round involves only a constant number of
calls to HEAVY-ANN(+), BASIC-CENTER(-), PROB-SORT(+), and FILTER(-). Similarly, Phase 2 in-
volves only a constant number of calls, ensuring that the total number of operations remains within
O(polylogn).

Suppose we order the operations temporally. For any ¢ € [T'(n)], the algorithm executes op-
eration a; at time step ¢t. We say the event CORRECT(a;) is TRUE if the algorithm performs a;
correctly. For instance, CORRECT(PROB-SORT(X;)) = TRUE implies that 7y, has dislocation at
most Dy; = O(logn). We denote the complement of CORRECT(a¢) by INCORRECT (a;). We define
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GOOD(t) as the event where all operations up to and including time step ¢ are performed correctly,
and BAD(t) as the complement of GOOD(¢). In this section, we prove the following lemma.

Lemma 12 Foranyt € [T'(n)], Pr[CORRECT(a;) | GOOD(t —1)] > 1 — ﬁ.

Proof If a; corresponds to FILTER or BASIC-CENTER, by Lemma 4 and Lemma 11, the claim holds
trivially. Thus, we focus on cases where a; is PROB-SORT or HEAVY-ANN.

We show that whenever the algorithm invokes PROB-SORT or HEAVY-ANN, each query made to
Q is unique, having not been previously invoked at any step. If this condition is true, we can invoke
Lemma 3 and Lemma 6, to establish our claim.

Let I" denote the set of all queries made in Phase 1. For each round ¢ in Phase 1, let I (i) C ExE

represent all quadruplet queries in round ¢. Define I'(y, ), I'(y, ), I'(N;), and T'(N;) as subsets of
I'(7) used to compute 7y, , Ty,, N;, and 7 , respectively. Note that I'(i) = I'(my,) U I'(my,) U

A~

I'(N;) U'(N;) and I = | J; I'(¢). The following properties hold:

* Each query (e, @) in I'(7ry; ) involves both edges in E(Si(l)7 8(1)).

(2

* Each query (&1, @2) in I'(7ry, ) involves both edges in E(SZ-(Z), 81-(2)) U E(SZQ), S.(Q)).

(2

* Each query (e, e2) in I'(N;) has one edge in E({#H; U (V; \ S;)}, CORE;) and the other in
&(Hi, H;). (This follows from the analysis in Section B.1.)

A~

* Each query (e1, e3) in I'(N;) involves both edges in £(V; \ S;, CORE;).

~

These observations confirm that I'(7y; ), I'(my, ), I'(N;), and I'(N;) are pairwise disjoint. Addi-
tionally, we can verify that T'(¢) N T'(j) = 0 for all ¢ # ;.

Similarly, let I represent the set of quadruplet queries made in Phase 2, and let I (7) denote the
queries used to compute 7, . Note that IV = | JI"(4), and for all 4, j with ¢ # 5, I'(2) N T7(j) = 0
holds since Z; N Z; = (). Additionally, we observe that I' "' I = () because each query in Phase 2
that involves a vertex from V); (that might be in & () for 7 > 1) also involves a vertex from CORE;,
however | J ¢c[r) CORE; N S = 0. This completes the proof. |

Using Lemma 12, a straightforward inductive argument implies the following.

1
Lemma 13 Let BAD denote BAD(T'(n)). Then, Pr[BAD] < —5q.

Part 2: Proving Necessary Properties.  Recall that in every round ¢ of Phase 1, the algorithm
samples S; = Si(l) U 81(2) C V;, where Si(l) CV; and SZ~(2) cy; \Si(l).

Let Pi(l) - Si(l) be an optimal k-center solution for Si(l) and let r* = COST:’(D(Si(l)) =
OPT®> (SZ-(l)) denote its cost. Call a vertex s € Si(l) sample-heavy if |B (s, 7*) N V;| > il and let

100k
Si(H) C §; denote the subset of sample-heavy vertices.

Suitability of S;. We say the event SUITABLE(S;) is true if all of the following conditions hold:
I. r* <2-0PT*®

1)« 99|V
2. [B(P, )NV > He-
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3. For every sample-heavy s € Si(H),

B(s,r") ﬂSZ@) > Aga > Q(logn).

Informally speaking, SUITABLE(S;) implies that an optimal k-center solution Pi(l) for §; is a
good solution for a large fraction of V; \ S;, and furthermore, every heavy vertex in Pl-(l) has many

representatives from its ball in 82(2). Observe that the event SUITABLE(S;) is a structural property
that is independent of the algorithm’s state when S; is computed. We prove the following.

Lemma 14 [In any round i, with probability 1 — ﬁ, SUITABLE(S;) is true.

Proof We prove each condition separately.

Condition 1: Let A* denote an optimal k-center solution for } and let COST%. (V) = OPT™.
Therefore, COST. (Pi(l)) < OPT®™. Since Pi(l) - Si(l) C V; represents an optimal k-center
solution on SZ-(U, the triangle inequality implies that COST>,) (S .(1)) <2-0PT®.

poT

Condition 2: Observe that any candidate k-center solution C = {cy,...,cx} C V; for V; can be
represented as & pairs of the form rep(C) = {(c1,71), ..., (ck, %)}, where each r; € V; denotes
the vertex defining the radius of the cluster centered by c;. Under this representation, there are
at most O(n?¥) distinct k-center solutions for V;. Henceforth, we work with this representation.
Observe that this representation also allows for partial clusterings that may not cover all points.
For a candidate k-center solution rep(C) = {(c1,71), ..., (ck, k) }, define the radius of rep(C) as
RAD(rep(C)) = maxc,ec d(ci, 7). We say that a clustering rep(C) fully covers aset i C V), if
Costg(U) < RAD(rep(C)).

For a (partial) clustering rep(C) , let Bad,epcy = {v € V; | d(v,C) > RAD(rep(C))}. Formally,
a clustering rep(C) is e-bad if |Bad,epcy| > €|Vi|. Let F denote the family of all distinct e-bad k-

center clustering of V;. Suppose rep(C) € F. Since Si(l) is randomly sampled from V), it holds
that,

Bad (1) (1)
Pr[rep(C) fully covers Si(l)} <(1- ||;3T(C)|)|3il | < e—elSi,
i
This implies,
(1) (1)
Pr |Jrep(C) € F, rep(C) fully covers 52(1)] < |}-|e_6|5i1 < nOk) o=elSi| 3)

Consider a representation rep 1) of Pi(l) such that each vertex in the representation belongs

to Si(l). By design rep(Pi(l)) fully covers Si(l). Recall that SZ»(l) = wy - klogn. Sete = ﬁ, by

appropriate choice of wa, (3) implies that in any round ¢, with probability 1 — ﬁ, \Badmp (P | <
%io‘ i.e., the number of vertices in V; farther than r* = RAD(rep(Pi(l))) from any vertex in Pz-(l) is
at most %io‘ with high probability. This implies

B, ) vl = S
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This proves condition 2.

Condition 3: Recall that a vertex s € SZ-(H) - SZ-(l) satisfies

. Vil
> .
|B(s,r*)NV;| > 100k

Since SZ@) (GRVAN SZ-(I) of size ws - klogn uniformly at random. Suppose ws is appropriately large.
Using Chernoff bounds, with high probability, for every sample-heavy h € SZ(H),

B(h,r*) NS?| > Apa = O(logn).

The next lemma follows in a straightforward manner from the definition of SUITABLE(S;).

Lemma 15 Given SUITABLE(S;) is true, there exists a subset S, C Pi(l) N SZ-(H), such that
1B(S;, ) N V| > E\Vi|. Hence, |B(PM 08U, ) n vy > 2.

Proof Under Condition 2 of SUITABLE, we have |B (P, rY, ™) N Vi| > ag - [Vi|, where ag =

m.

Notice that |P | = k so there exists at least one center p; E P( ) such that ]‘B(pl, NV >
%|V| > 1‘(\))o|k’50p1 € S( ) Weaddp1 € S;. LetPZ(P — P \{pl} andlet\%( “ TNV >
, where o1 € [0, 1]. Since ]P | = k — 1, we have that there exists a center py € P(1) such

that|‘B(p2, NNV > 25 Vil I > italso holds that [B(p2, 7*)NV;| > 25 -|Vi| > 1'3)}6#

100’

sops € S; (H) , we add ps in S;, and we set Pi(’Q) — Pﬁ) \ {p2}. We continue w1th the same way,

until |B( ”), )NV < aj - |Vi|, where oj < 155. At this point, we have |B(S;,7*) N V;| >
1 1

BRY, ) NV = BP9 Nl > S5V - Vil = S5

Part 3: Putting everything together. Let SUITABLE denote that for all 4, SUITABLE(S;) is
true. Let UNSUITABLE denote the complement of SUITABLE. Since the Phase 1 can only run for
7 = O(polylog n) rounds, the combined number of operations in Phase 1 and Phase 2 is bounded
by O(polylogn). Therefore, using Lemma 14, it follows that Pr{[UNSUITABLE] < ﬁ.

Let FAVORABLE denote the event GOOD N SUITABLE. By combining the previous fact with
Lemma 13, we can conclude the following.

Lemma 16 Pr[FAVORABLE] > 1 — —

We perform the following analysis under the assumption that FAVORABLE is true.

Lemma 17 Given that FAVORABLE is true, in every round i of Phase 1, for every s € SZ-(H) there

exists cs € Ci(H) such that d(s, cs) < p;. Furthermore, for every s € SZ.(H), there exists h € H,; such

that B(h,9 - p;) NV; O B(s,r*) N V.
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Proof Consider some round 7 of Phase 1 of the algorithm. Recall the definition of SUITABLE(S;).
Let s be a vertex in SZ.(H). Let ¢; € C; be any vertex such that d(s, cs) < p;. Such a vertex must
exist since C; is a k-center solution of 81-(1) computed using BASIC-CENTER (See Lemma 11) and
FAVORABLE holds. We must show that the algorithm identifies cs as center-heavy.

By Condition 3 of SUITABLE(S;), |B(s,7*) N SZ»(Q)] > Apa. Furthermore, Lemma 11, also
implies that p; < 2r*. Therefore, |B(cs, 3p;) N Si(Q)\ > [B(s,7*) N 81(2)| > Apga. This implies
that ¢, is identified as center-heavy by the algorithm. Equivalently, notice that B(cs,3p;) N V; 2
B(s,7*) NV;. The subset H, is a (6p;, 6p;)-net of Ci(H) so there exists h € H; such that d(cs, h) <
6p;. Hence, %(h, 9. ,OZ‘) ny; 2 %(S, 7’*) nY;. |

Lemmas 15, 17 together imply the following lemma.

Lemma 18 Given that FAVORABLE is true, in every round t of Phase 1,

98
[B(Hi,9 - pi) Vi 2 155Vl
Proof Consider the set S; C Pi(l) N SZ-(H) from Lemma 15. Use Lemma 17 to map every s € S; to
a vertex in ;. Let ; C H; denote the image of this mapping. By Lemma 15, (J [B(h,9-p;) N
heH;
Vi| > 28 .y, This completes the proof.

100
|

We are now ready to conclude.

Lemma 19 Given that FAVORABLE is true, the set A returned by the algorithm satisfies COSTY (V)
O(1) - OPT®. Moreover, the algorithm makes O((n + k?) - polylogn) queries to the quadruplet
oracle and O(polylog n) queries to the distance oracle.

Proof We first prove correctness and then bound the query complexity.

Correctness: Consider Step (iv) of some round ¢ of Phase 1 of the algorithm. Let £ denote the
number of vertices in the set {v € V; \ S; | £(v, Hi) N Ngg.p i) # ()}. By Lemma 6, for every vertex
v E (%(Hi, 9pi) N Vi) \ S;, there exists an edge ¢ € N; with d(e) < 9 Cya - p;. Combining this
with Lemma 18, we obtain

98
00

Observe that for every h € H; and v € CORE;(h), d (U, h) < p;. Furthermore, in Step (iv), N;
is filtered with v = 18 - Ciya - p;. It follows that |U4; U ;| > - |V;|. Therefore, O(log n) rounds
are sufficient for Phase 1 to complete.

Next, consider the set S; = C; U (SZ-(Q) \ CORE;) in Phase 2. By Condition 1 of SUITABLE(S;)
we have OPTOO(Si(l)) < 2-OPT®. We also know from Lemma 11 that p; < 2 - OPTOO(Si(l)).
Since H; C C;, it follows that CoSTE (U; US! " UCORE;) < O(1)-OPT>(S)) < O(1) - OPT™.
Therefore, in each round ¢ of Phase 1,

E+1Si| = [Vil.

UUS; =UuSY U (s}” \ COREi) U CORE; C B(S;, O(1) - OPT®) N V.
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Furthermore, since S = |J; S;, we can conclude that, max,ey d(v,S) < O(1) - OPT™. It is
well known (see Har-Peled (2001)) that this implies that S is a coreset for the k-center problem on V.
Next, consider the the sequence IT' in Phase 2. Observe that &(S, S) = UZ*:El (e, my T, )Ty
Since FAVORABLE is true each sequence is a low-dislocation ordering and therefore II’ forms a low-
dislocation decomposition of (S, S). Hence, by Lemma 11, CosT (V) < O(1) - OPT*™,

Query Complexity: In each round of Phase 1, the algorithm calls PROB-SORT a constant number
of times, resulting in O((n + k2) - polylogn) quadruplet queries. It invokes FILTER a constant
number of times, incurring O(polylog n) distance queries. In addition, it calls BASIC-CENTER and
HEAVY-ANN once per round, with HEAVY-ANN contributing an additional O((n + k?) - polylogn)
quadruplet queries and BASIC-CENTER contributing O(polylogn) distance queries. Thus, each
round of Phase 1 incurs a total of O((n + k?) - polylogn) quadruplet queries and O(polylogn)
distance queries. Since there are O(logn) rounds, the overall query complexity for Phase 1 is
bounded accordingly.

Phase 2 executes PROB-SORT once, making O(k? - polylogn) quadruplet queries. Moreover,
the algorithm invokes BASIC-CENTER(S, IT', k), which uses O(|IT'|? - polylogn) = O(polylog n)
distance queries (by Lemma 11); note that |[II'| = O(polylogn) because the number of rounds in
Phase 1 is bounded by O(logn).

Summing everything, the algorithm makes O((n + k?) - polylogn) quadruplet queries and
O(polylog n) distance queries.

|

Lemma 19 directly implies the following.

Theorem 20 There exists an algorithm ORACLE-CENTER such that, given a metric space . =
(V,d) of size |V| = n with bounded doubling dimension, that supports a probabilistic quadruplet
oracle with error ¢ < % and a distance oracle, the algorithm ORACLE-CENTER(X) returns, with
high probability, a set A C V of size k such that COSTY (V) < O(1) - OPT*, using O((n + k?) -
polylog n) queries to the quadruplet oracle and O(polylog n) queries to the distance oracle.

B.4. Extension to general metric spaces

A simpler variant of ORACLE-CENTER applies to general metric spaces. It follows the same overall
structure; we provide a brief overview. In Phase 1, instead of drawing two samples S(!) and S, it
draws only a single sample.

Specifically, in Phase 1, sample a set S; C V; of size ©(klogn), and compute (C;, p;) =
BASIC-CENTER(S;, {my, }), where X; = £(S;,S;). Next, instead of using HEAVY-ANN, set N; =
&(Ci, V;\S;) and compute the ordered sequence 7y, = PROB-SORT(XN;). Then compute FILTER(my;,, 18-
pi) to obtain Nglg'pi), anddefineld = {vee|ee Nz(ls'pi)}. Finally, recurse on V; \ (U U S;).

In Phase 2, compute a low-dislocation decomposition of _J ; Si as before, and then run BASIC-CENTER.
A simplified version of the preceding analysis yields the following result.

Theorem 21 There exists an algorithm such that, given a metric space ¥ = (V,d) of size |V| =
n, that supports a probabilistic quadruplet oracle with error p < % and a distance oracle, the
algorithm returns, with high probability, a set A C 'V of size k such that CosT} (V) < O(1) -
OPT®®, using O(nk polylogn) queries to the quadruplet oracle and O(polylogn) queries to the
distance oracle.
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Appendix C. Approximate Distance Data Structure

Let ¥ = (V,d) be a finite metric space of size n = |V| with bounded doubling dimension and
bounded spread. In this section we prove the following theorem.

Theorem 22 There exists an algorithm CONSTRUCT-NET, such that given a metric space ¥ =
(V,d) of size |V| = n, with bounded doubling dimension and polynomially bounded spread, that
supports a probabilistic quadruplet oracle Q with error p < %6 and a distance oracle, the algorithm
CONSTRUCT-NET(X) returns a data structure D such that the following hold with high probability:

1. Constructing D requires O(n polylog n) calls to the quadruplet oracle and O(polylog n) calls
to the distance oracle.

2. Querying D with any (u,v) € V x V returns a number d(u,v) € Rxq in O(logn) steps,
without requiring any additional oracle queries, such that d(u,v) < d(u,v) < O(1)-d(u, v).

3. D requires O(n polylogn) space.

We refer the reader to Section 3.2 for a detailed overview of our approach. We proceed as fol-
lows. In Section C.1, we describe the structural properties of the data structure. Next, in Section C.2
we present the construction algorithm. In Section C.3, we explain the query procedure.

C.1. Structure

Let 1 = [logdiam(X)], and A = |logsep(X)]. The data structure comprises a collection of nets
I' that approximate ¥ at every scale. More specifically, I' = {£,,, L,—1,...,Lxt1, L1}, Where
each £; C V, such that the following properties hold: £, C L; for all i € [, u — 1]. For every
integer i € [\, ], the set £; is a (2%,2°1)-net of V. Moreover, for each v € L;, we store a set
B, C B(v, 2i) MV containing v, and these sets form a partition of V, i.e., Uveﬁi B, =V and
B, N B, = 0 for all distinct u, v € L;.

The data structure also keeps track of some additional information.

(i) Parent: For each i € [\, u] and each u € V, let PAR(u, ¢) denote the unique vertex v € L;
such that u € B, (we allow PAR(u, i) = u).

(ii) Conflict-Set: For eachi € [\, u] and each v € £;, define CONFLICT(v,4) = B(v,4-2%) N L;.

Although the above are generally defined, for every ¢ € [\, p], the data structure only tracks
PAR(v, ), PAR(v,% 4 1), CONFLICT(v, i), and CONFLICT(PAR (v, + 1),7 + 1).

Next we prove some essentially properties. Let ¢ = 24m(*)
Lemma 23 The following properties hold for any integer i € [\, p]:
(i) |Li] < O(¢H).
(ii) For every v € L;, |CONFLICT(v,1)| < ¢* = O(1).
(iii) For any u,v € L;, if u € CONFLICT(v, i), then

PAR(u,i + 1) € CONFLICT(PAR(v,7+ 1),¢ + 1).
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Proof We prove each part separately. We critically use the doubling property, i.e., in a metric
2R

space with doubling constant ¢, any ball of radius R can contain at most ¢ [loga (27)] points that are

r-separated.

(i) Observe that £; is a set of 2°~!-separated points in V. Since the diameter of V is at most 2*,
all points in £; lie within a ball of radius 2*. Applying the doubling property with R = 2#
and r = 2071, we get

1| < c[om (3] foea(2m)] _ u-iv2,

Therefore, |£;] < (712 = O(¢CHY).

(i) By definition, for any v € £;, CONFLICT(v,) = B(v,4 - 2°) N L;. Applying the doublin
y y pplying g
property with R = 4 - 2¢ and r = 2/~1, we get that

2.(4-2%)

|CONELICT(v, 7)] < ¢ [P (3F)] = JIOgQ('ﬂTN _ (Mog(16)] _ ¢4,

(iii) For any x € V, by design d(z, PAR(z,i + 1)) < 2°*L. Suppose u € CONFLICT(v, 7). Using
the triangle inequality, we get that

d(PAR(u,i+ 1), PAR(v,7 + 1)) < d(PAR(u, i + 1),u) + d(u,v) + d(v, PAR(v,i + 1))
<2y g2t 42t =g 20

It follows that

PAR(u,i+ 1) € B (PAR(v,i + 1),4 - 21) N L;41 = CONFLICT(PAR (v, i + 1),7 + 1).

C.2. The procedure CONSTRUCT-NET

We now describe the procedure used to compute the net, which we refer to as CONSTRUCT-NET.
Suppose we are given p and A\. We build I' level by level in a top-down manner, from level ¢ =
1 down to level ¢ = A. During the construction, every time we handle an edge, we mark it as
processed. We make sure that if an edge ¢ € € has been marked as processed during any stage of
the construction, in all subsequent stages we can determine without any oracle queries whether
d(e) < 27 forevery j € [\, .

We first describe the computation of 1 and A, and then describe the procedure for constructing
an arbitrary level.

Computing ;» and A. We assume that a bound on the the spread $ is known. Pick any vertex v* € V
and consider the set of edges €,« = &(v*,V) incident on v*. Compute mg: = PROB-SORT(E}).
Then, perform distance queries on the last Dy, = O(logn) entries of m¢: and take the maximum

value, denoted by . Set u = log(2a) and A = log (%) Next, bucket the edges in &« by
computing BUCKET(7g ., A, i1, 2) and mark them as processed.
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Construction. Suppose the nets have been constructed from level p down to level ¢ 4+ 1. We now
describe the process for constructing level i. As we did in the previous section, for every step we
first state the objective of that step in bold and then describe how to achieve it using predefined
procedures in Section A.2.

1. Compute a 2°"!-cover of each set %5, where v € ;.
This step proceeds in rounds. For each vertex v € L£;,1, initialize %1(}1) = B,. Repeat the
following steps for 7 = O(polylog n) rounds. In round j:

from each ‘ng ), where v € L; 1.
For each v € £; 1, sample a subset SW) c 8Y) of size \ng])\ = k1 = O(C polylogn).
If it is the first round (i.e., j = 1), add v to 51(,1), so that Sq(,l) = 81(,1) U{v}.

(a) Sample a set of <, points Sf,j )

(b) Compute X;, the union of edges between ngj ) and SBg,j ) \ Sf,j ), foreachv € L.
Define X; = |J &S, 8P\ 8%y and SV = | sY.

U€£¢+1 UEEi+1

(c) Bucket the unseen edges in X; based on weight.
Partition X; into 5Cj, the set of unprocessed edges, and X; \ 5Cj, the set of edges pre-

viously processed in the construction. Compute Ty, = PROB-SORT(X;). Bucket the
edges in Z)_Cj by computing BUCKET(ij , A, i, 2) and mark them as processed.

(d) Identify the covered vertices, i.e., vertices in B (Sq()j ), 2i~1) N5 for each v € Lii1.

Since (X; \ 5Cj)(2i72) have already been processed in previous rounds, they can be com-

(2
(2i—1) 7(21'—1) z i—1

step. Taking their union, we obtain X; = X; U (36 \ X)),

We now use 36;2%1)

sample in SU ), to one such sample (arbitrarily in case there are multiple such samples).
. i—1

More formally, for each s € SU), we define M, = (). We then make a pass over f)Cg-2 ),

For every edge (s,b) € 965-2%1), where s € SU) we add b to M, i.e., My = M U {b},

and remove all edges from DCE»T%)

— (91—1
puted without additional queries. Similarly, we can obtain X ) from the previous

to map each vertex that is within distance 2~! from at least one

that contain the vertex b.
(e) Remove the covered vertices from each %S}j ), where v € L£;,1.

For each v € £;11, update ‘ngﬂ) = %9) \ U M.
sESf,j)

At the end of the rounds, we set S, = UJT-:1 Sf,j ) for each v € L;41 and define S =
Uvec,,, So- In the analysis we show that S, is a 2'~'-cover of 9B, for each v € L;1.

2. Compute L;,a (201,207 )-net of S.

(a) Identify an edge-set 2 C &(S, S) such that if d(s;, s2) < 2071, {s1,52} € 2.
LetZ = {{s,s'} € &(S,S) | PAR(s',i + 1) € CONFLICT(PAR(s,% + 1),i+ 1)}. Since
|CONFLICT(PAR(s,7 + 1), + 1)| < O(1), we have |Z| < O(|S]).
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(b) Bucket the unseen edges in 2 based on weight.  Partition Z into Z, edges not
previously processed, and 2 \ Z, edges that have been processed. Compute Ty =
PROB-SORT(Z). Bucket the edges in 2 by computing BUCKET (75, A, 4, 2) and mark
them as processed.

(c) Compute £;. Note that all edges in Z are already processed. Identify the edges in
227D Consider the graph G = (S, 2(2271)). Find a maximal independent set Z of G
that includes vertices in £;. By design, vertices in £;11 do not have an edge between
them in GG. Hence, this is always possible. Set £; = 7.

3. Bookkeeping. For every u € S\ L;, arbitrarily map it to some vertex in v € L£; such that
d(u,v) < 201, Note that this must be possible since £; is a maximal independent set. Let
Cy € S mappedtowv € L;. Set B, = UuECU M, as the vertices covered by v € L;. For
every v € V, store PAR(v, 7). Use Z(2') to compute CONFLICT(v, i) for every v € L£; and
store it.

Analysis. First, we show that the estimates p and A are accurate.

Lemma 24 The following conditions hold:

(i) diam(V) < 2+ < 2diam(V).

< 2* < sep(V).

(i) se,z;(V)

(iii) p— X = O(logn).

Proof Let diam = diam(V) and sep = sep(V). Consider the estimation procedure. Let v € V
be the initial vertex. By Lemma 3, the maximum dislocation of the edge {v*,v}, where v* is
the farthest neighbor of v, is at most Dy, = O(logn) from the end of my,. Hence, the estimate
satisfies « = d(v,v*). Moreover, « < diam < 2q, where the upper bound follows from the
triangle inequality. This implies diam < 2* < 2 - diam, and 2* = o = ;fji‘aeg] < sep, and since
2 > diam, it also follows that 2% > 522 Therefore, u — A = O(log $) = O(log n). [

Now observe that the construction algorithm never invokes the quadruplet oracle on any pair of
edges more than once. Each call to PROB-SORT is applied to a set of edges that has not been pro-
cessed previously, so the correctness of each invocation is independent. Consequently, by Lemma 3,
we can assert that any invocation of PROB-SORT in the algorithm returns an ordered sequence
with maximum dislocation at most Dy; = O(logn). Furthermore, there are O(logn) levels (by
Lemma 24), each with 7 = O(polylogn) calls to PROB-SORT in Step 1 and a constant number of
calls to PROB-SORT in Step 2. By applying the union bound, we conclude that every invocation is
correct with high probability. We denote this event by FAVORABLE.

1

Lemma 25 FAVORABLE holds with probability 1 — 5

We now prove the that the data structure is computed as per the specifications.
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Lemma 26 Given FAVORABLE is true, with probability at least 1—%, the familyl’ = {Ly, ..., L,}
satisfies the structural conditions in (C.1). The construction requires O(n polylogn) calls to the
quadruplet oracle and O(polylogn) distance queries. Moreover, the total space including addi-
tional information is O(nlogn).

Proof First, note that since FAVORABLE is true, by Lemma 4, this implies all calls to BUCKET(+)
work as intended. We now show that every £; is a (2¢,2°~1)-net of V. Fix alevel i € [\, p.

Correctness: At the end of Step 1, for every v € L; 1 the set S, is a 2= 1_cover of B,,. Indeed,
since B, C B(v, 2°71) NV, the doubling property ensures there exists a set Q C B, with |Q] = 4¢
and CosTgy (B,) < 201, Given that k1 = ©(( polylog n), the proof of Condition 2 of Lemma 14
implies that

B, 27 B0 > LB,
100
Repeating for 7 = O(polylog n) rounds yields S, = UJT':1 Sz(,]), a 2'~l-cover of B,

At the end of Step 2, let S = U, , So- We claim that £; forms a (2071 2= 1)net of S. By
construction, the set Z in Step 2 includes every edge (s,s’) € &(S,S) for which PAR(s',i + 1)
lies in CONFLICT(PAR(s, + 1)). Lemma 23 then ensures that Z contains CONFLICT (v, i) and
that |Z| = O(n polylog n). Moreover, £; C S is chosen as a maximal independent set in the graph
G = (S8,2@)), which guarantees that for any distinct u, v € £; we have d(u, v) > 2¢~!, while
every vertex in S \ £; is within 2°~! of some vertex in £;. Thus, £; isa (2/~!,2°"1)-net of S.

At the end of Step 3, L; is a 2-cover of V. For any u € V that belongs to M for some s € S
in Step 1 and is mapped to v € £; in Step 3, we have d(u, s) < 2¢~! and d(s,v) < 271, so by the
triangle inequality d(u,v) < 2¢. Therefore, every u € V is within 2 of some v € L;, and L; is a
(2%,2¢=1)-net of V, as required.

Repeating the above argument for every level i € [\, u| completes the correctness proof. Fur-
thermore, since the data structure is constructed as specified and the conflict sets have constant size,
the space complexity is obviously O(nlogn).

Query Complexity: First, by Lemma 24 there are only ¢ = (1 — XA+ 1) = O(logn) levels.
For each level, in Step 1, each set D_Cj has size O(n polylogn) since every vertex in %1(,] ) \ 853 ) can

only have edges to its O(polylogn) centers in ngj). As j < 7 = O(polylogn), the total number of
quadruplet queries in Step 1 is O(n polylog n) and the number of distance queries is O(polylogn),
incurred by 7 invocations of PROB-SORT(-) and 7 - £ invocations of BUCKET(-) respectively.

Similarly, since |Z| < O(n polylogn), the single call to PROB-SORT(-) in Step 2 requires
O(n polylog n) quadruplet queries, and the subsequent calls to BUCKET(-) incur O(polylogn) dis-
tance queries due to ¢ invocations.

Overall, over ¢ levels the total number of quadruplet queries is O(n polylogn) and the total
number of distance queries is O(polylogn).

|

C.3. Querying edge weights

Query Procedure. Given an edge {u,v} € &, let i* be the minimum level for which one of the
following conditions holds:
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(1) PAR(u,7*) = PAR(v,3"),
(2) PAR(u,7*) # PAR(v,4*) and PAR(v,i*) € CONFLICT(PAR(u,i*),1*).
Return 2713,

Analysis. First, observe that the query procedure does not require any oracle calls. We now prove
that the distance returned by the algorithm is a good approximation

Lemma 27 Given a data structure satisfying the conditions in Section C.1, for every € € &, the
above procedure returns a distance de € R>q such that d(u,v) < de < 8- d(u, v).

Proof Let {u,v} € & such that d(u,v) € [271,27) for some integer j. Let the distance returned by
the query procedure be 2" +3. By definition of conflict-sets, we know that if PAR(u, i) # PAR(v, 7)
and PAR(v,i) & CONFLICT(PAR(u,1),%), then d(PAR(u, ), PAR(v,4)) > 4 - 2!. We use this obser-
vation to upper bound and lower bound 7*.

We first show that ¢* < j — 1. Equivalently, we show by for every ¢ > j — 1 at least one of the
conditions of the query procedure holds.

Suppose none of the conditions hold for some ¢ > j — 1. By triangle inequality, we have

d(u,v) > d(PAR(v, ), PAR(u, 1)) —d(v, PAR(v, 7)) —d(u, PAR (u, 1)) > 4-20—21—2¢ = 2.21 > 2.2971 = 27

which is a contradiction because d(u,v) € [2771,27). Hence, i* < j — 1. Next, we show that
i* > j — 3. Observe the following:

d(u,v) < d(u, PAR(u,1)) + d(PAR(u, 1), PAR(v, 1)) + d(PAR(v,7),v) < 6 - 2" < (1.5) - 20+2,

If i* < j — 4, we have d(u,v) < (1.5) - 2972 < 2071, which is also a contradiction.
So the level ¢* found by the query procedure must satisfy j — 3 < ¢* < j — 1. Consequently,
the estimate 2" +3 is bounded by

d(u,v) <2013 < 8- d(u,v).

Putting Lemma 25, Lemma 26 and Lemma 27 together, we get Theorem 22

Appendix D. %k-median and .£-means OracleCluster problems

In this section, we develop O(1)-approximation algorithms for the k-median/means OracleClus-
ter problem. For metric spaces with bounded doubling dimension, our algorithm uses O((n +
k2) polylog n) quadruplet queries and O(polylog n) distance queries. For general metrics, the algo-
rithm requires O (nk polylog n) quadruplet queries and O(polylog n) distance queries. An overview
of our approach is given in Section 3.3. Our algorithms critically use the ORACLE-CENTER al-
gorithm from Section B.3 and CONSTRUCT-NET from Section C.1. We focus on the k-median
algorithm here, noting that the k-means version follows with only minor modifications. The algo-
rithm and analysis for spaces with bounded doubling dimension are presented in Section D.1 and
Section D.1.1 respectively. The case for general metric spaces is discussed in Section D.2.
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D.1. The procedure ORACLE-MEDIAN

As done in previous sections, we first describe the objective of each step in bold and then discuss
how to implement it.

Algorithm ORACLE-MEDIAN.

1. Compute (C, p*) = ORACLE-CENTER(V, k).
Compute a k-center solution (C, p*) = ORACLE-CENTER(V, k), where ORACLE-CENTER
is the algorithm described in Section B.3. Theorem 20 implies that CosTz®(V) < p* <
O(1) - OPT**(V).
For each v € C, compute a set ¥(v) C V such that d(v, ¥(v)) < O(1) - p* and | J,,c ¥(v) =
V. Note that while ORACLE-CENTER (V, k) does not explicitly output such a mapping, it can
easily be deduced directly from Steps (i), (ii) and (iv) of Phase 1 and Phase 2 of ORACLE-CENTER
without additional oracle queries.

2. Compute a decomposition of V such that the diameter of each component is O(n°p*).
Let & = &€(C,C). From Phase 2 of ORACLE-CENTER(V, k) we get a low-dislocation decom-
position IT of €. Let Il = {7g ,...,mg_} where m = O(polylogn) (this follows from the
analysis of ORACLE-CENTER).

For each i € [m], compute égn% 0= FILTER (7g ,n%p*) and construct the graph G =
(C, é(”d"’*)). Let C1,...,C, C C denote a partition of C, where all vertices in the same C;
belong to the same connected component in G. Observe that p < k.

Next, let Sél) denote the first set of samples obtained in Step (i) of round ¢ of Phase 1 of
ORACLE-CENTER(V). Define S() = Ueepr] Sél) where 7 = O(polylog n) is the number of

rounds in Phase 1. Define
U= (U ww)\s0,
veC;

Observe that for each 7, diam(l;) < O(n*p*).

3. Let pn = [log(n® - p*)] and X = Uog(ﬁ—;)j. Compute T; = CONSTRUCT-NET(U;, p1, )
for each U/; .

CONSTRUCT-NET denotes the algorithm for constructing an approximate distance data struc-
ture in Section C. Since there can be up to k& connected components, we cannot compute
each CONSTRUCT-NET(U;, pi, \) independently as that may require (k) distance oracle
queries. Moreover, we also need to make sure we do not reuse any quadruplet query used
by ORACLE-CENTER. We proceed as follows.

(a) Bucket edges processed directly by ORACLE-CENTER(V, k) . Let & C & be the
cluster-processed edges, i.e. those processed by some invocation of PROB-SORT during
the computation ORACLE-CENTER(V, k) (i.e., the edges in 7y, , 7y, TRy T s and 7z,
for ¢ € [7]), and let

&= U (sz Uy, Uﬂ-f\fé U T, U7Tz,2>.
Le(T]
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Bucket the edges in &’ by computing BUCKET(7, A, u, 2) for each sequence
7 € {my,, my,, TR, M55 T2, 0 e [r]}.

(b) Compute J; = CONSTRUCT-NET(/;) for every i simultaneously by dovetailing
their executions and sharing oracle queries.
Observe that each T; has the same depth. Consequently, the PROB-SORT and BUCKET
operations required by each CONSTRUCT-NET(l;) can be shared by dovetailing their
executions, ensuring that each round of Phase 1 of every CONSTRUCT-NET({;) is com-
pleted before proceeding to the next round, and similarly in Phase 2.
Suppose level £ of each T; is being computed. Let D_Cj i denote the set of unprocessed
edges in round j of Phase 1 of CONSTRUCT-NET({;). The algorithm CONSTRUCT-NET(4;)
partitions edges into buckets by first ordering them via Tx,, = PROB- SORT(DC ;) and
then applying BUCKET(WXN A, i1, 2). Instead of performmg these operations separately

for each i, we can directly bucket all edges together by computing 775, = PROB—SORT(DCj),
J
where DC = Usep X, followed by BUCKET(WDAC S 1y 2).

To ensure that the construction of any T; does not reuse any query made during the com-
putation of ORACLE-CENTER(V, k), we replace DC with DC \ & in the above process.
A similar approach applies to Phase 2. Note that Whenever any CONSTRUCT-NET(U;)
requires information about an edge e € &/, its bucket has already been computed.

4. Run a standard k-median algorithm on each I/; independently. Use the the solutions to
compute a coreset M.

Let Alg,, denote the standard O(1)-approximation algorithm for the k-median problem de-
scribed in Arya et al. (2001). We run Alg,, on each component I4; as follows: Whenever the
algorithm requires the distance between any pair of vertices u, v € U; xXU;, it queries the struc-
ture 7; to obtain a constant-stretch estimate of d(u, v). If for a pair of vertices u,v € U; x U;,
the query procedure on 7; does not find a parameter ¢* satisfying the conditions in Section C.3,
we estimate d(u,v) as 2.

Let A; denote the k-median solution produced by Alg,, on I; (using the approximate dis-
tances provided by T;). For every u € A4;, let n,, be the number of vertices in U; that are
assigned to u by Alg,,(U;). Define the (weighted) set

= (Uayust,

i€[p]

assigning each u € A; weight 7, and each u € S(!) weight 1. We note that M forms a
coreset for the k-median problem on V.

5. Run a standard %-median algorithm on the coreset M.

Finally, run Alg,, on the coreset M. Observe that the distance queries made by Alg,, can be
categorized into three types:

Type I: u, v € A; for some i € [p].
Type II: u € A; and v € A;, where i # j and i, j € [p].
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Type III: u € A; for some i € [p] and v € SO,
Type IV: u,v € SO,

For Type I, use J; to estimate d(u,v), and for Type II, define the distance to be co. To
answer queries of Type III or TV, let A* = |J;(, Ai, compute & = &(8M, A%\ &,
obtain mg» = PROB-SORT(E"”), and then compute BUCKET(7er, A, 11, 2) to answer all Type
111 queries; next, define & = <U€1<€26[7’} E(Séll),séi))) \ &', compute 7; = PROB-SORT(&),
and bucket the edges by computing BUCKET (73, A, 11, 2) to answer all Type IV queries, where

u € Séll) and v € Sg), for 1 # ly. Ifu,v € Sy, for £ € [7], then &' is used to estimate
d(u,v) (step 3 (a)).

Finally, let P denote the set of k vertices returned by Alg;, on M, and return P as the final
solution.

D.1.1. ANALYSIS OF ORACLE-MEDIAN

Similarly to the correctness proof of the k-center OracleCluster problem, we first show that with
high probability all subroutines perform correctly. It suffices to show that no quadruplet query is
every repeated. This allows us to invoke the correctness of ORACLE-CENTER, as well as every
invocation of CONSTRUCT-NET and PROB-SORT independently. We then complete the analysis
under the condition that these routines perform correctly.

Lemma 28 For any two distinct edges e1,e9 € &, the algorithm never invokes Q(el, @g) more
than once.

Proof This is true in Step 1. As stated in Lemma 12, the desired property holds when executing
ORACLE-CENTER(V, k). In Step 2, note that no quadruplet queries are required.

In Step 3, during the construction of each data structure T;, no queries are repeated as estab-
lished in Theorem 22. Moreover, whenever an edge was cluster-processed, it was excluded from
the PROB-SORT procedure, which guarantees that the steps remain independent with respect to in-
vocations of PROB-SORT directly by ORACLE-CENTER(V, k). Furthermore, observe that the edges
provided as input to the probabilistic oracle during the HEAVY-ANN procedure (in the k-center al-
gorithm) do not appear in the construction of any 7J;. This follows from the fact that these edges
always contain at least one heavy vertex (see Section B.1) from the set S (). However, we explicitly
remove S!) when defining 24;. In Step 4 again, no quadruplet queries are used.

Finally, in Step 5 consider the procedures PROB-SORT(€”) and PROB-SORT(E). Since we have
already removed the cluster-processed edges, it remains only to ensure that none of the remaining
edges were processed in a HEAVY-ANN procedure. Indeed, the queries given as input to the proba-
bilistic oracle during HEAVY-ANN always contain a vertex from CORE, yet no core vertex is included
in & by definition (recall that core vertices are subsets of S (2)).

Furthermore, every query to the probabilistic oracle during HEAVY-ANN always contain one
edgein (S s (1)) (specifically, between two heavy vertices), but none of these edges are included
in &”. Thus, the result follows.

|

We now prove correctness and bound the query complexity.
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Lemma 29 [t holds that COST,(V) < O(1) - OPT(V), with probability at least 1 — Q(l)

Proof Since the total number of times ORACLE-CENTER and PROB-SORT are invoked is O(polylog n),
by Lemma 28 every procedure invoked by the algorithm works correctly with high probability.

It holds that OPT™(V) < OPT'(V) < n - OPT*(V). Therefore, 54y, OPT!(V) < p* <
O(1) - OPT*®(V) < O(1) - OPTY(V). By definition, the diameter of {; is bounded by at most

3. p* < nPOPTY(U;); and since u — A = O(logn), the height of the tree structure T; is
O(logn).

Note that in any 4;, all edges with distance at most %OPT1 (U;) can be rounded up to —OPTl (Us)
because their total contribution to the clustering cost is at most 5 OPTY(l4;), preserving the 0O(1)-
approximation; consequently, the algorithm Alg,, returns a set .A; of k vertices satisfying COST}4i U;) <
O(1)OPT'(U4;). Moreover, for any vertex u; € U; and u; € U; with i # 7, it holds that
d(ui,uj) > n3p* >n- OPTl(V), so no vertex from Uf; can be assigned to a center in another
connected component in any O(1)-approximation solution; thus, CosT},(V) < O(1) - OPT!(V)
with |[M| = O(k?polylog n), making the weighted set M a coreset for k-median clustering on V
(see Galhotra et al. (2024)).

We need to argue that applying Alg,, on M with the modified edge weights returns a set P
such that CosTh (V) < O(1 ) -OPT!(V). This follows easily because (i) treating distances less than
maxep| {%OPT1 )} as e 16 0PTY(V) increases the overall error by at most %OPTl(V), (i)
any distance between Vertlces from different components can be treated as co since such distances
exceed n - OPT! (V), and (iii) the remaining edge weights are stretched by at most a factor of 2 (by
Theorem 22).

|

Lemma 30 Our algorithm performs O((n + k?) - polylogn) queries to the quadruplet oracle and
O(polylogn) queries to the distance oracle, with probability at least 1 — ﬁ.

Proof In Step 1, the k-center algorithm performs O((n + k?)polylog n) queries to the quadruplet or-
acle and O(polylog n) queries to the distance oracle, with high probability. In Step 2, note that m =
polylog (n), so FILTER (g, ,n3p*) for every i € [m] performs O(polylog n) distance queries. Next,
in Step 3, constructing all data structures 7; requires O(n - polylog n) queries to the quadruplet ora-
cle and O(polylogn) queries to the distance oracle; for every level at round j, across all the T;’s, the
procedures PROB- SORT(I)C’) PROB-SORT(Z'), BUCKET(DC’ A, 1t,2), and BUCKET(Z', \, 1, 2) are
executed, performing O(n - polylog n) quadruplet queries and O(polylog n) distance queries, since
\56;|, 1Z/| = O(n). Furthermore, BUCKET(, 11, A, 2), for all 7 among Ty Ty, Tx,» Tp» and g,
over ¢ € [7], where |\ — | = O(log n), performs O(polylog n) distance queries. In Step 5, the sub-
routines PROB-SORT(E") and BUCKET(ﬂ'gH A, i1, 2) require O(k?polylog n) queries to the quadru-
plet oracle in total (since |SM)| = k and |.A4;| = k) and O(polylog n) queries to the distance oracle,
while the subroutines PROB-SORT(&) and BUCKET(mz, A, u, 2) require O(k?polylog n) quadruplet

queries in total because for every /1 < {5 € [7], |€(Sé11), Sg))| = O(k?) and there are O(polylog n)
phases in the k-center algorithm (i.e., 7 = O(polylog n)), and O(polylog n) distance queries.
|

We conclude with the next theorem.
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Theorem 31 There exists an algorithm ORACLE-MEDIAN such that, given a metric space Y. =
(V,d) of size |V| = n with bounded doubling dimension, that supports a probabilistic quadruplet
oracle with error p < % and a distance oracle, the algorithm ORACLE-MEDIAN(X) returns, with
high probability, a set A C V of size k such that CosTY (V) < O(1) - OPT!, using O((n + k?) -
polylogn) queries to the quadruplet oracle and O(polylogn) queries to the distance oracle. The
same guarantees hold for the k-means OracleCluster problem.

D.2. Extension to general metric spaces

The result follows by substituting our algorithm for the k-center OracleCluster problem on general
metric spaces (Theorem 21) into a modified version of the algorithm for the k-median OracleCluster
problem presented in Galhotra et al. (2024) for general metric spaces, which in turn is an adaptation
of the approaches in Har-Peled and Mazumdar (2004); Mettu and Plaxton (2002). We provide a
rough sketch.

First, compute a k-center clustering to estimate the k-median cost. Let p* denote the estimated
k-center cost. Next, process the vertices in ) in rounds to construct a k-median coreset M. For a
round i < O(polylogn), let V; be the set of vertices processed in round i, starting with V; = V.
Sample a set of O(k - polylog n) vertices S;.

While Galhotra et al. (2024) execute a subroutine ANN(S;, V;) to find an approximate nearest
neighbor from every vertex in V; to those in S;, we skip this step. Instead, we define & = &(S;, V)
and compute the ordering e/ = PROB-SORT(E’). We then use FILTER(7re/, 27 - fT;) to partition
the edges into buckets, for j < O(logn). These buckets allow us to estimate the nearest neighbor
distance of each vertex in V; \ S; within an additive error of Z—;.

Using these proxy distances, we identify the safe vertices as in Galhotra et al. (2024). At the end
of this process, we obtain a set Q of O(k polylog n) vertices, which forms a coreset for the k-median
OracleCluster problem on V. Let € = £(Q, Q). We compute a low-dislocation decomposition of
€ into O(polylog n) components and bucketize each component as above.

Finally, we run a standard k-median algorithm on Q using the bucketed edge weights. As in
the bounded doubling dimension case, we must ensure that no quadruplet queries overlap with the
algorithm used to compute the initial k-center solution. We skip the details of this step for brevity.
Putting everything together we get the following.

Theorem 32 There exists an algorithm such that, given a metric space ¥ = (V,d) of size |V| =
n, that supports a probabilistic quadruplet oracle with error p < % and a distance oracle, the
algorithm returns, with high probability, a set A C 'V of size k such that COST}4(V) < O(1)- OPT!,
using O(nk polylogn) queries to the quadruplet oracle and O(polylogn) queries to the distance
oracle. The same guarantees hold for the k-means OracleCluster problem.

Appendix E. Experiments

In this section, we present preliminary experimental results based on a basic implementation of
CONSTRUCT-NET. Specifically, we use CONSTRUCT-NET to construct an approximate distance
structure D (see Section C.1). We then evaluate the quality of solutions to the k-center, k-median,
and Minimum Spanning Tree (MST) problems by running standard algorithms on distances from
D, and compare them against baselines obtained by applying the same algorithms to ground-truth
distances.
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Figure 2: Query count on synthetic dataset with cluster_ratio = 0.2 and baseline k-center.

Datasets. We conduct experiments on both synthetic and real-world datasets.

The synthetic dataset consists of N nodes distributed in the 2-dimensional Euclidean space
[0,1]2, where nodes are assigned to &k uniformly distributed cluster centers and their positions are
perturbed by Gaussian noise (¢ = 0.1). We consider N = {102,103, 104}, and define the cluster
ratio, cluster_ratio, as the ratio of k to n. In our experiments, we set cluster_ratio = {0.02,0.2}.

For the real-world dataset, we use the Adult dataset Asuncion et al. (2007), sampling N =

10,000 entries that describe individuals’ income and education attributes. The dimensionality of
this dataset is d = 6.

Implementation. We do not implement CONSTRUCT-NET exactly and omit steps specifically de-
signed to handle persistence. Furthermore, while the original version uses PROB-SORT and BUCKET
to partition edges into buckets, we simplify this step using a sampling-based heuristic.

Specifically, in round ¢, when identifying edges within a target distance, the approximation
process begins by sampling 30 edges from the edge set to be sorted and computing their distances
using a distance oracle. Edges with distances less than 2°=2 are retained. From these, the top half
is selected. Each edge in the original set is then compared against this subset using the quadruplet
oracle. An edge passes the filter if it is deemed smaller than at least half of the selected edges.

Once D is built we implement the query procedure as described in the original algorithm.

Results on Synthetic Dataset. We primarily focus on the k-center objective and use GONZALEZ’s
k-center algorithm as the standard. In this experiment, we vary the number of samples, N =
{102,103, 10%}, and the noise level in the quadruplet oracle, p = {0.0,0.1,0.2,0.3}. Additionally,

we adjust the , cluster_ratio = {0.02,0.2}, to examine how the number of clusters affects query
usage.

52



METRIC CLUSTERING AND GRAPH OPTIMIZATION PROBLEMS USING WEAK COMPARISON ORACLES

p=0.0 p=0.1 p=0.2 p=0.3
B baseline B baseline mmm baseline B baseline

004 == ours 004 == ours 004 == ours 004 == ours
s e s s
© 0.3 © 03 © 0.3 © 0.3
i = = o
0 0 0 n
[a] [a] [a] o
x 0.2 x 0.2 x 0.2 x 0.2
© © © ©
=01 201 =01 201

0.0 10? 10° 104 0.0 102 10° 104 0.0 102 10° 104 0.0 102 10° 104

N N N N

(a) (b) (c) (d)

Figure 3: Clustering result on synthetic dataset with cluster_ratio = 0.02 and baseline k-center.
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Figure 4: Clustering result on synthetic dataset with cluster_ratio = 0.2 and baseline k-center.
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Figure 6: k-median and MST on Adult dataset.

For query counts, we report the number of distance queries used by the baseline, along with
the number of quadruplet and distance queries used to construct D (Figures 1 and 2). From the
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figures, we observe that as IV increases, the number of hard queries (i.e., distance oracle calls) used
in our method remains stable, while those in the k-center baseline increase rapidly. Although the
number of quadruplet queries in our method can sometimes exceed the total queries used by the
baseline (especially for small k), these queries are simple comparisons and significantly cheaper,
making them more practical in large-scale settings. Moreover, since the number of hard queries in
the baseline scales as Nk, we observe a steep increase in its query count as cluster_ratio grows
from 0.02 to 0.2, while both quadruplet and distance queries in our method remain stable. This
highlights the scalability advantage of our approach.

To evaluate clustering performance, we compare the maximum distances returned by the base-
line versus those using our approximate distances (Figures 3 and 4). Our method achieves results
comparable to the baseline and, in some cases, even outperforms it. In summary, our approach
is both efficient, requiring far fewer hard queries, and effective, delivering competitive clustering
performance.

Results on real-world dataset. Again, we primarily focus on the k-center objective. We first
examine how the noise level p affects performance by fixing cluster_ratio = 0.02 and varying
p ={0.0,0.1,0.2,0.3} (Figures 5(a), (b)). Next, we investigate the impact of the number of clusters
by fixing p = 0.1 and varying cluster _ratio = {0.02,0.07,0.12,0.17,0.22} (Figures 5(c), (d)). In
addition to k-center, we also evaluate the performance of k-median and MST objectives (Figure 6),
using LLOYD’S algorithm for k-median and PRIM’ S algorithm for MST as the standard.

From Figures 5(a), (c), we observe that the query count in our algorithm remains unaffected by
both the noise level and the number of clusters, whereas the k-center baseline is sensitive to the num-
ber of clusters—consistent with our findings for the synthetic data. For the approximation quality
(Figures 5(b), (d)), we observe trends similar to those seen in the synthetic dataset. When combined
with other clustering objectives, as shown in Figure 6, our method continues to demonstrate robust-
ness to noise and requires only a small number of hard queries, highlighting its generalizability and
scalability across different graph-based clustering tasks.
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