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Abstract—Many real-world graphs can be viewed as Het-
erogeneous Networks or Heterogeneous Information Networks
(HINs) for that they comprise a diversity of node types and
relation types. Due to the efficient representation ability of Graph
Neural Network and the idea of random walk, many recent
studies apply graph representation learning to HINs and achieve
satisfactory results. However, these works either treat different
node types in a metapath equally, which is inconsistent with
the original graph semantic information for that different node
types should have different statuses, or only consider the first-
order (node-level) and second-order (metapath-level, a.k.a. link-
level) information aggregation while ignoring the higher-order
relations. To tackle these two problems, we propose a novel Star-
Shaped Hierarchical Graph Attentional Network (StarGAT) model
to boost representation learning in HINs. Specifically, we assume
nodes in HINs can be categorized into a star-shaped structure
including one center node type and a bunch of auxiliary node
types in a specific task; and we encode node-level, link-level and
motif-level attentions in a hierarchical manner to capture richer
semantic information. Extensive experiments on three datasets
illustrate the model effectiveness.

Index Terms—Graph Attentional Network, Network Embed-
ding, Heterogeneous Information Network, Motif

I. INTRODUCTION

Many real-world data are organized as graphs intrinsically
like social networks or publication networks. However, net-
work analysis is not an easy task due to the following facts. (1)
Since graphs imply complex geometric information and struc-
tural manifold, graph data is a typical type of non-Euclidean
data, which makes it infeasible to apply the traditional grid-
structured deep learning methods. (2) Adjacency matrix is
computationally inefficient since it needs |V| × |V| memory
(|V| is the number of nodes) when representing the graph. To
tackle these problems, graph representation learning, which
is also called network embedding, has drawn great attention
recently. The general idea is to represent each node as a low-
dimensional vector. Besides, the learned embeddings could
simplify downstream tasks.

Many neural network models have been developed to ana-
lyze complex networks recently [1]–[4]. Among them, one of
the most brilliant approaches is Graph Convolutional Network
(GCN), which can be divided into two categories, namely
spectral-based methods [5]–[7] and spatial-based methods [8]–
[10].

The objectives of network embedding are mostly homoge-
neous networks, which is unpractical for that real-world graphs
are often composed of more than one kind of nodes and/or
more than one kind of links, which is called Heterogeneous
Information Networks (HINs) [11]. This shows that apart from
the structural information, we also need to take into account
the rich semantic information to get the overall embeddings.

For HINs, most methods [12]–[17] handle semantic infor-
mation using the idea of metapath. However, the predefined
metapaths require specific domain knowledge, and assigning
equal status to every node in a metapath is against real-world
scenarios. Besides, with the fast development of attention
mechanism [10], [15], [16], recent studies usually consider
node-level and link-level attention, but they ignore the higher-
order relations, i.e. motif in our paper.

The main contributions of our work are summarized as
follows.
• We propose to study a hybrid-order (from node level to

motif level) attention mechanism in HINs, which provides
a new perspective for further research.

• We propose a novel Star-Shaped Hierarchical Graph
Attentional Network (StarGAT), a new neural network
framework using three-layer hierarchical attention mech-
anism to boost graph representation learning without pre-
defined metapaths. It can be easily applied to supervised,
semi-supervised and unsupervised tasks.

• Extensive experiments on three public real-world datasets
in two downstream tasks (node classification and node
clustering) show that StarGAT outperforms seven state-
of-the-art baselines.
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Fig. 1. Some graph schemas used in the paper. (a): An example of k-partite
graph. (b): An example of enhanced k-partite graph. (c): An example of star-
shaped motif. (d): Graph composed of hypernodes.

II. RELATED WORK

A. Graph Representation Learning

Graph representation learning aims to project nodes in
a graph into a low-dimensional feature space while pre-
serving node proximity, so that the low-dimensional vectors
can be easily applied to downstream tasks. Existing net-
work embedding algorithms can be categorized into several
methodology-based classes, namely matrix eigenvector-based
methods, matrix decomposition-based methods, community
detection-based methods, neural network-based methods, etc.

When it comes to HINs, the neural network based models
can be categorized into two classes, namely shallow neural
network and deep neural network. Shallow neural networks
usually adopt metapath/metagraph based random walk [12],
[13], [18]. Deep neural networks, on other hand, generally
use GNN [15], [16], [19], [20], reinforcement learning [21],
auto-encoder [22], etc. And many of them apply self-attention
to achieve better performance.

B. Higher-Order Structure

In the literature, the most widely studied higher-order struc-
ture is motif, which is a subnetwork appearing frequently in
the original network [23]. There exist some studies which
apply motif to graph analysis. In [24], Lee et al. try to
capture higher-order neighborhoods by using weighted multi-
hop motif adjacency matrices. In [25], Tsourakakis et al.
develop a graph clustering method based on graph motifs for
that triangle motif is a better signature than edge. In [10],
Sankar et al. propose a motif convolution method which
captures semantic higher-order relationships to improve the
semi-supervised node classification. Although these works
might have achieved state-of-the-art results in specific tasks,
there are few methods synthesizing semantic information from
node-level to motif-level in a hierarchical manner to boost HIN
embedding.

III. PROBLEM FORMULATION

In this section, several concepts are introduced. We also
provide a notation chart (Table I) to summarize the main
symbols used in this paper.

Definition 1 (Heterogeneous Information Network (HIN))
A HIN G = {V, E ,A,R, φ, ϕ} is one kind of graph, where
V is the node set and E is the link set. It is also associated
with a node type mapping function φ : V → A and an edge

TABLE I
SUMMARY OF THE MAIN NOTATIONS.

Rn n-dim Euclidean space
a,a,A scalar, vector, matrix
aT,AT vector and matrix transpose
| · | number of elements in the set
·||· concatenation of two arrays
xv initial feature vector of node v
V the set of nodes in the graph
E the set of edges in the graph
A the set of node types in the graph
R the set of link types in the graph
A one specific node type in A
R one specific relation type in R
VA the set of nodes in type A
AR

c the node type linked to the center node c via relation R
NR

c the set of neighbor nodes of the center node c via relation R
Vc the set of center nodes

type mapping function ϕ : E → R, where A and R denote
the sets of node types and edge types s.t. |A|+ |R| > 2.

An example of HIN is illustrated in Fig. 1-(a) with |A|=3
and |R| = 2.

Definition 2 (k-Partite Graph, Enhanced k-Partite Graph)
A k-partite graph is a graph whose nodes can be divided
into k different independent sets, and nodes in the same set
do not link to each other. An enhanced k-partite graph is a
generalized extension of k-partite graph, which allows nodes
in one set to link to each other.

An example of 3-partite graph is Fig. 1-(a) for that author,
paper and term nodes are three independent sets.

An example of enhanced 3-partite graph is Fig. 1-(b). The
links among artist set make it an enhanced 3-partite graph.

Definition 3 (Motif, Star-shaped Motif, Hypernode) A
motif is a recurrent and statistically significant subgraph of
a larger graph. A star-shaped motif is a heterogeneous motif
which has one kind of center node linking to a bunch kinds of
attribute nodes. All the nodes in a star-shaped motif instance
can be abstracted into one hypernode.

Fig. 1-(c) is an instance of star-shaped motif with a center
node artist2 in Fig. 1-(b). The nodes in Fig. 1-(c) can be
viewed as a hypernode. Therefore, the enhanced k-partite
graph Fig. 1-(b) can be viewed as Fig. 1-(d), which is only
made of hypernodes.

IV. THE PROPOSED STARGAT METHOD

A. Type-Specific Transformation

Due to the fact that different node types share quite different
feature spaces [15], [16], [19], we first apply a type-specific
node feature transformation operation to transform the raw
feature vectors in different feature spaces into the same la-
tent feature space. It is implemented by |A| transformation
matrices. Specifically, for node v ∈ VA of type A, we have

ev = MA · xv (1)
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Fig. 2. The overall structure of StarGAT. It includes a type-specific transfor-
mation, node-level attention, link-level attention and motif-level attention to
form the final embedding of center node a1.

where xv ∈ RdA is the original feature vector of node v,
ev ∈ Rd is the transformed feature vector in the common latent
feature space, MA ∈ Rd×dA is the trainable type-specific
weight matrix which projects the raw feature into the latent
feature space.

B. Node-Level Aggregation

In the node-level aggregation, we aggregate features be-
tween a center node and its neighbor nodes linked by one
specific link type R. In other words, it is an aggregation
via the same link type R within the same star-shaped motif
instance, so it can also be construed as intra-link aggregation.
Following [8], we adopt a graph attention layer to weight sum
the features of all the type AR

v neighbor nodes of the center
node v. The main motivation is that different nodes of the same
type might contribute differently to the center node. As in the
publication graph, when we want to categorize papers into data
mining and computer vision, the terms “social network” and
“graph analysis” are more representative than “deep learning”
or “neural network”. We learn attention coefficients eRvu for
every node u in type AR

v linked to the center node v, and then
weight sum those neighbors according to the coefficients via:

eRvu = LeakyRelu(aTR[ev‖eu])

αR
vu =

exp(eRvu)∑
s∈NR

v

exp(eRvs)

hR
v = σ(

∑
u∈NR

v

αR
vu · eu)

(2)

where aR ∈ R2d is a trainable attention vector which is the
core of graph attention, NR

v is the set of neighbor nodes of the
center node v via relation R including itself. Following [8],
we use LeakyRelu as the activation function to get the relation-
specific attention coefficients eRvu for each neighbor node,

after which eRvu is standardized using a softmax function thus
obtaining αR

vu. After that, we weight summarize the relation-
specific neighbor nodes by using αR

vu, and finally an activation
function σ(·) is applied to get hR

v w.r.t. relation R.

C. Link-Level Aggregation

Node-level aggregation can only learn one kind of semantic
in the original HIN. Therefore, we further conduct a link-
level aggregation. In the link-level aggregation, we aggregate
|R| features learned from the above node-level aggregation.
In other words, it is an aggregation via different link types R
within the same star-shaped motif instance, so it can also be
construed as an inter-link aggregation. It is reasonable since
different neighbor node types might contribute differently in
getting the center node’s embedding. For example, the weight
of the author nodes should be greater than the term nodes in
identifying paper field since many of the terms like “reinforce-
ment learning” and “few-shot learning” are non-discriminative
w.r.t. paper fields intuitively. Here, we also adopt the attention
mechanism to assign different weights to different link types.
Following [15], the self-attention is formulized as:

eR = qT
R(

1

|Vc|
∑
v∈Vc

tanh[WRh
R
v + bR])

βR =
exp(eR)∑

i∈R
exp(ei)

h+
v =

∑
R∈R

βR · hR
v

(3)

where Vc is the set of center nodes of star-shaped motif
instances. WR ∈ Rd×d is a trainable weight matrix which
will be applied to every hR

v . bR ∈ Rd is a type-specific bias,
which is also a trainable parameter. qR ∈ Rd is the trainable
attention vector w.r.t. relation type. eR is standardized using
a softmax function and we can get βR. Once we get βR, we
weight summarize type-specific embeddings hR

v learned from
the node-level aggregation and finally get embedding h+

v . Note
that, h+

v has aggregated intra-link and inter-link information,
i.e., auxiliary information from all the attribute nodes, which
makes h+

v a virtual representation of a hypernode.

D. Motif-Level Aggregation

So far, for enhanced k-partite graph, the original HIN
has already been converted to a new graph containing only
hypernodes w.r.t. center nodes. For k-partite graph, however,
it is only a bunch of isolated nodes. Here, we only consider θ
most frequent indirect neighbor nodes via any attribute nodes
for k-partite graph and make it a new graph.

Anyway, we have obtained a new homogeneous graph
with hypernodes. Now we apply another attention mechanism,
which is the higher-order self-attention, on this new graph.
Note that there are two versions of attention mechanism
corresponding to the enhanced k-partite graph and the k-partite
graph respectively. This is because nodes in the enhanced
k-partite graphs have a random number of neighbors, while



nodes in k-partite graphs have a fixed number of neighbors
(θ). The two versions of attention mechanism are as follows:

hi = σ(
∑
j∈Ni

exp(LeakyRelu(pT[Wh+
i ‖Wh+

j ]))∑
k∈Ni

exp(LeakyRelu(pT[Wh+
i ‖Wh+

k ]))
Wh+

j )

(4)
and

hi =
∑
j∈Ni

exp(pT tanh[Wh+
j + b])∑

k∈Ni

exp(pT tanh[Wh+
k + b])

h+
j (5)

where Ni is the set of neighbor hypernodes of the target
hypernode including itself. The other notations are similar to
those in Eq. (2) or Eq. (3).

Algorithm 1 model training for StarGAT
Input: G = {V, E ,A,R, φ, ϕ}, raw features {xv,∀v ∈ V}
Output: learned node embeddings {hv,∀v ∈ Vc}

1: for node type A ∈ A do
2: node content transformation via Eq. (1)
3: end for
4:
5: while not converge do
6: for v ∈ Vc do
7: for R ∈ R do
8: calculate hR

v via Eq. (2)
9: end for

10: calculate h+
v using hR

v via Eq. (3)
11: end for
12: for node v ∈ Vc do
13: sample neighbor nodes of v
14: claculate hv via Eq. (4) or Eq. (5)
15: end for
16: backpropagation via Eq. (6) or Eq. (7)
17: end while

E. Training and Optimization

StarGAT is capable of both semi-supervised and unsuper-
vised learning paradigms. For semi-supervised learning, we
use cross entropy loss as the loss function:

L = −
∑
v∈VL

|C|∑
c=1

yvc · loghvc (6)

where VL is the set of labeled nodes, C is the set of all label
classes, yvc is the ground-truth label of v, and hvc is the
predicted logit of v.

For unsupervised learning, we use negative sampling:

L = −
∑

log[σ(hT
i · hj)− σ(h′Ti · h′j)] (7)

where σ is the sigmoid activate function, hi and hj are
embeddings of linked hypernode pair i and j, while h′i and
h′j are embeddings of unlinked hypernode pair as negative
samples.

TABLE II
DATASET STATISTICS.

Datasets Number of Nodes Number of Edges Metapaths

ACM
# paper (P): 4,025
# author (A): 7,167
# term (T): 1,902

# P-A: 37,055
# P-T: 972,973

P-A-P
P-T-P
A-P-T-P-A

DBLP
# paper (P): 14,328
# author (A): 4,057
# term (T): 7,723

# P-A: 19,645
# P-T: 85,810

P-A-P
P-T-P
A-P-T-P-A

Yelp

# business (B): 2,614
# user (U): 1,286
# service (S): 2
# star level (SL): 9
# reservation (R): 2

# B-U: 30,838
# B-S: 2,614
# B-SL: 2,614
# B-R: 2614

B-U-B
B-S-B
B-SL-B
B-R-B
U-B-S-B-U

V. EXPERIMENTS

A. Experimental Settings

1) Datasets: We adopt three HIN datasets. ACM is a
computer science publisher. It is a 3-partite graph containing
paper-author, paper-term links with labels of paper fields,
and the center node type is paper. DBLP is also a 3-partite
graph sharing the same structure with ACM. Yelp is an online
business transaction platform. It is a 5-partite graph containing
business-user, business-service, business-star-level, business-
reservation links with labels of business types, and the center
node type is business.

2) Baselines: We compare StarGAT against seven algo-
rithms.
• Deepwalk [1] is a homogeneous random walk-based

model which adopts skip-gram on node sequences gen-
erated by random walk.

• Metapath2vec [12] is a heterogeneous random walk-
based model that uses metapath-based random walk and
skip-gram to get HIN embedding.

• Node2vec [2] is a homogeneous random walk-based
model which extends Deepwalk by taking both DFS and
BFS into consideration when sampling neighbor nodes.

• GCN [7] is a homogenous GNN that utilizes graph
convolutions on the first-order neighbors as layer-wise
aggregation in spectral domain.

• GAT [8] is a homogenous GNN that performs graph
convolutions in the spatial domain with incorporating the
first-order neighbor nodes.

• HAN [15] is a heterogeneous GNN which learns HIN
embedding via node-level and semantic-level attentions
in metapath-specific homogeneous graphs.

• MAGNN [16] is a heterogeneous GNN which uses intra-
metapath aggregation and inter-metapath aggregation to
learn HIN embedding.

3) Configurations: For all the three datasets, we split the
center nodes into training, validation and test sets of the ratios
10%, 10% and 80% respectively.

For random-walk based methods, we set walk length to 100,
walk per node to 10, and window size to 5. For GNN models,
we optimize them using Adam with learning rate 0.005 and
weight decay 0.001. We set the dropout rate to 0.5. For a
fair comparison, we set the number of attention head to 8,



TABLE III
NODE CLASSIFICATION RESULTS (%) ON THE THREE REAL-WORLD DATASETS. BOLD: BEST; UNDERLINE: RUNNER-UP.

Datasets Metrics Deepwalk Metapath2vec Node2vec GCN GAT HAN MAGNN StarGAT

ACM Macro-F1 59.44 51.49 73.31 24.85 51.25 65.52 70.40 82.60
Micro-F1 61.91 67.36 74.53 50.17 62.78 69.18 72.03 83.12

DBLP Macro-F1 21.60 58.76 68.20 64.60 66.50 74.49 75.57 75.65
Micro-F1 36.17 66.55 71.73 68.83 70.13 78.53 78.90 79.15

Yelp Macro-F1 48.23 45.48 57.29 54.98 67.52 56.37 71.82 71.94
Micro-F1 65.04 61.38 68.78 72.82 76.23 74.18 77.66 78.23

TABLE IV
NODE CLUSTERING RESULTS (%) ON THE THREE REAL-WORLD DATASETS. BOLD: BEST; UNDERLINE: RUNNER-UP.

Datasets Metrics Deepwalk Metapath2vec Node2vec GCN GAT HAN MAGNN StarGAT

ACM NMI 2.70 15.02 25.55 4.67 9.98 29.80 29.19 42.57
ARI 2.40 14.20 24.10 1.84 8.74 19.20 31.42 40.90

DBLP NMI 0.11 22.82 2.51 16.34 25.55 40.56 36.21 40.66
ARI -0.06 15.10 0.84 17.52 29.71 45.71 39.34 47.83

Yelp NMI 25.17 0.94 10.06 36.23 34.83 40.97 35.93 40.46
ARI 22.43 0.74 11.65 34.64 33.52 44.15 31.01 38.79

TABLE V
ABLATION STUDY RESULTS (%) ON THE THREE REAL-WORLD DATASETS.

Datasets Metrics init. vr1 vr2 vr3

DBLP Macro-F1 75.65 74.86 73.69 75.41
Micro-F1 79.15 78.44 77.48 78.87

ACM Macro-F1 82.60 82.20 82.15 47.50
Micro-F1 83.12 83.02 82.96 60.99

Yelp Macro-F1 71.94 54.65 64.09 71.37
Micro-F1 78.23 54.60 75.68 77.52

if applicable. The dimensions of attention vectors in StarGAT,
HAN and MAGNN are set to 128, the θs are set to 3. We train
every model until they converge with the training set, and then
get the test set embeddings using the trained model. Early-
stopping is used in StarGAT, HAN and MAGNN with the
validation set. We set the final output embedding dimensions
to 64 for all the algorithms. For metapath-depended baselines,
we test all the metapaths in Table II and report the best
performance for every dataset.

B. Node Classification and Node Clustering

We conduct the node classification and node clustering tasks
on the three datasets. After training the models using the
training set, we feed the test set nodes to the models and get
their embeddings. Then we partite these embeddings together
with their ground-truth labels into a training set and a test
set via 80%-20% proportion and train a SVM classifier. The
results in terms of Macro-F1 and Micro-F1 are reported in
Table III. For node clustering, similarly, we train a k-means
model using the test set node embeddings, where k is set to the
number of classes. The results in terms of normalized mutual
information (NMI) and adjusted rand index (ARI) are reported
in Table IV.

According to both tables, we can see that StarGAT performs
the best in almost every metrics, especially the ACM dataset,
where StarGAT outperforms the best baseline by achieving
around 10% improvement. Generally speaking, GNN-based
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Fig. 3. Hyper-parameter analysis of StarGAT.

HIN embedding methods perform the best due to their abil-
ity to exploit the rich semantic information besides graph
structural information. GNN-based homogeneous network em-
bedding methods perform the second best, which is mainly
because indirect link relations are also sufficient to accomplish
the center node classification and clustering tasks.

C. Ablation Study

To explore how the three self-attentions affect this model,
we conduct ablation study by disabling one of the three
self-attentions. For simplicity, we denote init. for the initial
StarGAT, vr1 for the StarGAT variant with no node-level
attention, vr2 for the StarGAT variant with no link-level
attention and vr3 for the StarGAT variant with no motif-level
attention. The results are shown in Table V.

As can be seen, on the ACM dataset, the motif-level atten-
tion is important in getting better embeddings. For the Yelp
dataset, the node-level attention and the link-level attention are
more important, perhaps because more attribute node types
around the center node make it necessary to distinguish the
degree of importance between them. For clean 3-partite graph
DBLP, the importance of the three attentions is not trivial.

D. Hyper-Parameter Analysis

We conduct the parameter analysis experiment and report
the results of Micro-F1 on the ACM dataset.
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1) Number of neighbors on the k-partite graph datasets:
We test θ most frequent neighbors via all kinds of indirect links
for k-partite graphs. As we can get from Fig. 3-(a), setting θ
to 0 is a bad idea, and the performance will take a huge leap
even only considering one neighbor.

2) Dimension of attention vector: It only influences the
model slightly, according to Fig. 3-(b). The performance
achieves the best result when it is 128.

3) Dimension of the final embedding: According to Fig. 3-
(c), the result is steady when the dimensions are among 16 to
128, but it drops drastically when the dimension is 256, which
is also due to the overfitting issue.

E. Visualization

We also visualize the results to achieve an intuitive un-
derstanding. We visualize StarGAT, MAGNN, HAN, and
Node2vec on the ACM dataset via t-SNE [26] in Fig. 4.

According to the figure, we can see that StarGAT performs
the best, for that nodes in different types are relatively far.

VI. CONCLUSION

In this work, we propose a novel end-to-end star-shaped
hierarchical graph attentional network (StarGAT) for heteroge-
neous information network embedding, which contains node-
level, link-level and motif-level attentions. StarGAT assigns
different statuses to different node types and forms star-shaped
hierarchical HIN. By aggregating neighbor nodes from lower-
order to higher-order, StarGAT can exploit richer local struc-
ture and neighbor semantic information without predefined
metapaths. Experiments on three real-world datasets in the
node classification and node clustering tasks show StarGAT
can achieve state-of-the-art performance. In future work, we
would like to explore more pattern-fixed network schemas like
signed network or multi-relational network etc.
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[14] R. Hussein, D. Yang, and P. Cudré-Mauroux, “Are meta-paths necessary?
revisiting heterogeneous graph embeddings,” in CIKM, 2018, pp. 437–
446.

[15] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in WWW, 2019, pp. 2022–
2032.

[16] X. Fu, J. Zhang, Z. Meng, and I. King, “MAGNN: metapath aggregated
graph neural network for heterogeneous graph embedding,” in WWW,
2020, pp. 2331–2341.

[17] C. Shi, B. Hu, W. X. Zhao, and S. Y. Philip, “Heterogeneous information
network embedding for recommendation,” IEEE Trans. Knowl. Data
Eng., vol. 31, no. 2, pp. 357–370, 2018.

[18] Y. He, Y. Song, J. Li, C. Ji, J. Peng, and H. Peng, “HeteSpaceyWalk:
A heterogeneous spacey random walk for heterogeneous information
network embedding,” in CIKM, 2019, pp. 639–648.

[19] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Hetero-
geneous graph neural network,” in KDD, 2019, pp. 793–803.

[20] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph trans-
former,” in WWW, 2020, pp. 2704–2710.

[21] G. Wan, B. Du, S. Pan, and G. Haffari, “Reinforcement learning based
meta-path discovery in large-scale heterogeneous information networks,”
in AAAI, 2020, pp. 6094–6101.

[22] H. Wang, F. Zhang, M. Hou, X. Xie, M. Guo, and Q. Liu, “SHINE:
Signed heterogeneous information network embedding for sentiment link
prediction,” in WSDM, 2018, pp. 592–600.

[23] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex networks,”
Science, vol. 298, no. 5594, pp. 824–827, 2002.

[24] J. B. Lee, R. A. Rossi, X. Kong, S. Kim, E. Koh, and A. Rao, “Graph
convolutional networks with motif-based attention,” in CIKM, 2019, pp.
499–508.

[25] C. E. Tsourakakis, J. Pachocki, and M. Mitzenmacher, “Scalable motif-
aware graph clustering,” in WWW, 2017, pp. 1451–1460.

[26] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J.
Mach. Learn. Res., vol. 9, no. 11, 2008.


