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Table 1. Node classification (accuracy(%) +std). X, A, and Y correspond to node features, graph
adjacency matrix, and node labels respectively. “1” and “|” refer to performance improvement
and drop compared with the same GRACE base model.
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when data augmentation is not leveraged? &

# Soft clustering for pair-wise node similarity

Table 2. Node clustering. Table 4. Node classification ogbn-arXiv.
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Table 3. HomoGCL + BGRL.

= Cluster assignment matrix R;; = p(c; | h;) indicating the soft clustering
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value between node v; and cluster c;. 2

(a) Similarity histogram on CIFAR10O (b) Similarity histogram on Cora (c) Ablation study on Cora and Photo
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= Obs #1: GRACE (w/o MP) is only on par with or even worse than MLP. r=1(v;,v;)€€

= Obs #2: GRACE (w/ MP) outperforms w/o MP and MLP by a large margin. # Theoretical insight
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bors, which degenerates them to a similar situation of VCL w/o augmentation. stricter lower bound of Ml between raw node features X and node embeddings U Wil g,
GRACE (w/ MP) can still maintain the performance even without raw features. R

and V in two augmented views, comparing with the raw contrastive loss proposed
by GRACE. Formally,

LiomoceL < Larace < I(X;U,V).

(a) GRACE (b) GRACE + HomoGCL (c) BGRL (d) BGRL + HomoGCL

Conclusion: Message passing which relies on the homophily assumption is the
key factor of GCL.

Figure 5. Visualization of node embeddings on Cora via t-SNE. Each node is colored by its label.
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