

Figure 1. Schematic diagram for class-imbalanced graph and existing methods.

- Graph data in-the-wild tend to be class-imbalanced intrinsically.
- Existing methods adapting GNNs to class-imbalanced graphs:
- **Generative approaches**: augmenting the original class-imbalanced graph by synthesizing plausible minor nodes:
- Loss-modifying approaches: adjusting the objective function to pay more attention to minor class samples.

Empirical Study & Motivation

Figure 2. Probability distribution of misclassified samples on Cora-LT and CiteSeer-LT.

- Squeezed minority problem: minor subspaces are squeezed by major ones in the latent space.
- Motivation: enalrging the minor decision boundary in the latent sapce! \rightarrow Synthesizing harder minor samples beyond the hard minor ones.

Challenges

- The decision boundary is shared by a minor class and its neighbor class. Synthesizing harder minor samples would unavoidably violate the neighbor class subspace.
- A proper augmentation method is required to enlarge the subspaces of minor classes while avoiding deteriorating those of the neighbor ones.

Our solution: **GraphSHA** for <u>Synthesizing HA</u>rder minor samples.

GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node Classification

Chang-Dong Wang¹ Hui Xiong^{2,3} Wen-Zhi Li ^{1,2} ¹CSE, Sun Yat-sen University ²AI Thrust, HKUST (GZ) ³CSE, HKUST

GraphSHA Overview

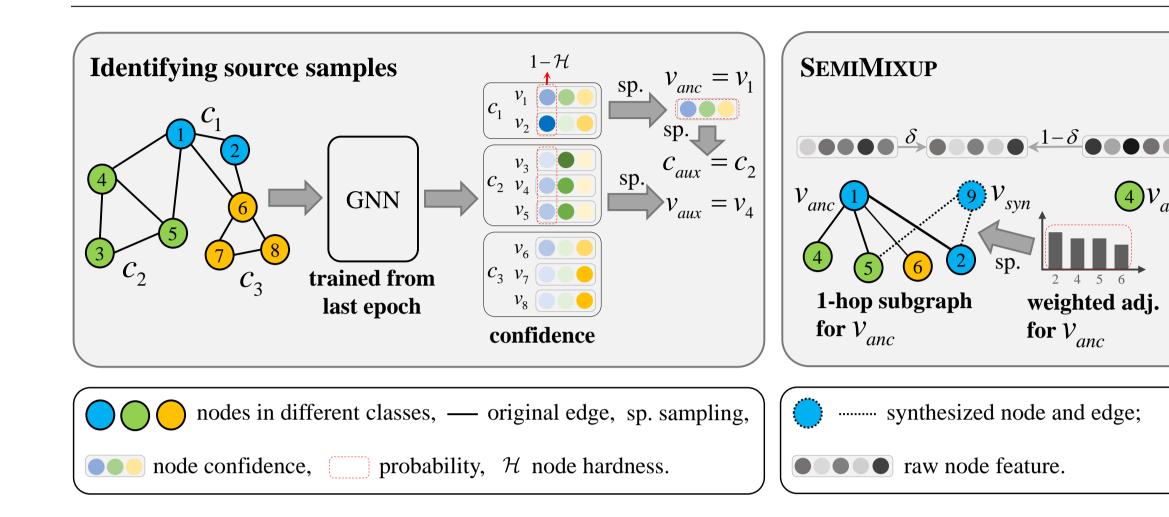


Figure 3. GraphSHA overview where c_1 is minor class and c_2 , c_3 are major classes.

- (Left): Identifying two source nodes v_{anc} and v_{aux} via three samplings.
- (**Right**): Mixuping v_{anc} 's 1-hop subgraph and v_{aux} solely to get v_{syn} .

#1: Identifying Source Samples

Def. (node hardness). $\mathcal{H}_i = 1 - \operatorname{softmax} \left(\mathbf{Z}_{i, \mathbf{Y}(v_i)} \right)$, where $\mathbf{Z}_i = f_{\theta}(v_i) \in \mathbb{R}^C$.

- Identifying anchor node v_{anc} :
- Sampling from minor nodes in c_1 according to their hardness \mathcal{H} to get v_{anc} .
- Identifying auxiliary node v_{aux} :
- Sampling from major classes c_2 , c_3 according to v_{anc} 's confidence on them to get neighbor class c_{aux} ;
- Sampling from nodes in neighbor class c_{aux} according to their confidences on minor class c_1 to get v_{aux} .

#2: SEMIMIXUP for Harder Sample Synthesis

• Synthesizing node features: a simple mixup between node embeddings of v_{anc} and v_{aux} in the raw feature space

$$\boldsymbol{X}_{syn} = \delta \boldsymbol{X}_{anc} + (1 - \delta) \boldsymbol{X}_{aux}, \ \delta \in [0, 1].$$

- Synthesizing edges: enabling propagating information beyond the minor boundary to the interior of the minor class & blocking propagation from the minor class to the neighbor class.
- Leveraging Graph Diffusion Convolution (GDC) to build the weighted adjacency matrix $ilde{S}$ based on topology information.
- Sampling the neighbor set of v_{syn} according to $ilde{m{S}}_{anc}$. The number of neighbors is sampled from another degree distribution based on the entire graph to keep degree statistics.

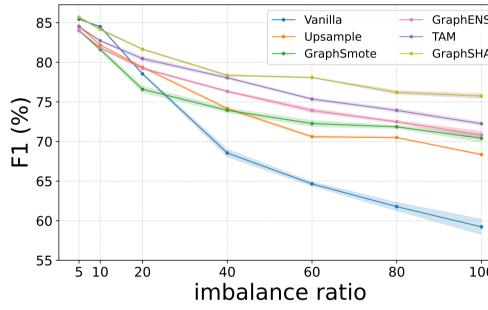
Remark. For v_{anc} and v_{aux} , the synthesized harder minor sample is defined as

$$\begin{cases} \boldsymbol{X}_{syn} = \delta \boldsymbol{X}_{anc} + (1 - \delta) \boldsymbol{X}_{an} \\ \mathcal{N}_{syn} \sim P_{1hop}^{diff}(v_{anc}), \\ \boldsymbol{Y}(v_{syn}) = \boldsymbol{Y}(v_{anc}), \end{cases}$$

where δ is a random variable in [0, 1], and $P_{1hop}^{diff}(v_{anc})$ is the 1-hop neighbor distribution of v_{anc} with probability \tilde{S}_{anc} generated via GDC.

Paper: https://arxiv.org/abs/2306.09612

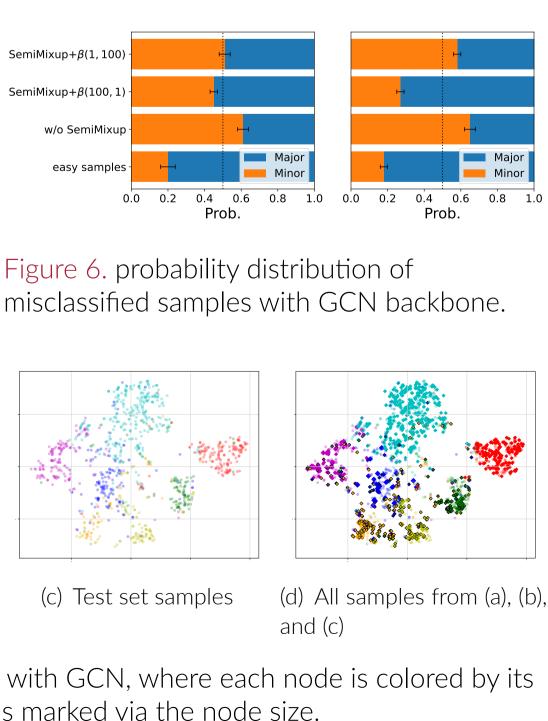
Jian-Huang Lai¹



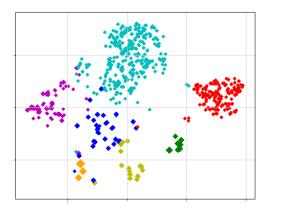
Dataset	Cora-LT			CiteSeer-LT			PubMed-LT			
ρ =100	Acc.	bAcc.	F1	Acc.	bAcc.	F1	Acc.	bAcc.	F1	
Vanilla	72.02±0.50	59.42±0.74	59.23±1.02	51.40±0.44	44.64±0.42	37.82±0.67	51.58±0.60	42.11±0.48	34.73±0.7	
Reweight				63.61±0.22						
PC Softmax				62.15±0.45						
CB Loss				61.47±0.51						
Z Focal Loss	78.43±0.19	<u>73.17</u> ±0.23	73.76 ± 0.20	59.66±0.38	53.39±0.33	51.80±0.39	75.67±0.20	71.34 ± 0.24	72.03±0.21	
BeNode	78.93±0.13	$73.13{\scriptstyle \pm 0.17}$	$\underline{74.46}{\pm}0.16$	62.39±0.31	55.62±0.27	54.05±0.24	76.00±0.16	$70.68{\scriptstyle \pm 0.15}$	71.41±0.15	
Upsample	75.52±0.11	66.68±0.14	68.35±0.15	55.05±0.11	48.41±0.11	45.22±0.14	71.58±0.06	63.79±0.06	64.62±0.07	
GraphSmote	75.44 ± 0.43	68.99 ± 0.51	70.41 ± 0.52	56.58±0.29	50.39 ± 0.28	47.96 ± 0.33	74.62±0.08	69.53 ± 0.10	71.18±0.09	
GraphENS	76.15±0.24	71.16 ± 0.40	70.85±0.49	63.14±0.35	56.92±0.37	55.54 ± 0.41	77.11±0.11	71.89 ± 0.15	72.71±0.14	
TAM (G-ENS)	77.30±0.23	72.10±0.29	72.25±0.29	63.40±0.34	57.15±0.35	55.68±0.40	<u>78.07</u> ±0.15	<u>72.63</u> ±0.23	<u>72.96</u> ±0.22	
GraphSHA	79.90 ±0.29	74.62 ±0.35	75.74±0.32	64.50 ±0.41	59.04±0.34	59.16 ±0.21	79.20 ±0.13	74.46 ±0.17	75.24±0.27	

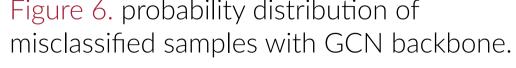

Table 2. Ablation study on Cora-LT with GCN. "+" stands for synthesizing.

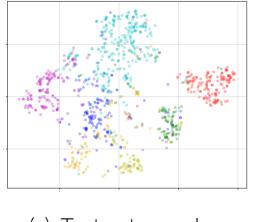
Method	Acc.	bAcc.	F1	C0 (0.5%)	C1 (1.1%)	C2 (2.4%)	C3 (5.4%)	C4 (11.6%)	C5 (25.0%)	C6 (54.0%)
GCN	72.02±0.50	59.42±0.74	59.23±1.02	0.0	28.6	67.0	60.0	81.2	93.8	93.1
+easy samples	76.90±0.19	69.55 ± 0.21	71.28 ± 0.25	21.1	69.4	67.9	63.1	73.1	95.1	94.7
+harder samples w/o SemiMixup	75.84±0.38	$71.38{\scriptstyle \pm 0.58}$	71.44 ± 0.59	54.7	71.7	63.1	58.4	74.2	92.5	82.6
+harder samples w/ SemiMixup	79.16±0.25	72.89±0.32	74.62±0.27	42.2	74.3	71.8	62.3	72.5	94.4	93.4
+harder samples w/ SemiMixup (HK)	79.60±0.17	74.37 ± 0.18	75.17 ± 0.15	48.4	75.8	68.3	63.2	77.8	93.5	92.8
+harder samples w/ SemiMixup (PPR)	79.90±0.29	74.62 ± 0.35	$75.74{\scriptstyle\pm0.32}$	51.6	76.9	66.0	65.4	76.5	93.8	92.1



Class	C_0	C_1	C_2	C_3	C_4	C_5	C_6
Distribution	(0.5%)	(1.1%)	(2.4%)	(5.4%)	(11.6%)	(25.0%)	(54.0%)
Vanilla (GCN)	0.0	28.6	67.0	60.0	81.2	93.8	93.1
Reweight	32.9	70.9	75.0	67.5	78.6	93.5	87.9
PC Softmax	29.7	78.0	70.9	66.2	81.2	93.8	82.5
CB Loss	31.3	74.7	72.8	69.2	81.9	94.0	83.4
Focal Loss	29.9	75.9	72.2	71.9	82.6	94.6	83.2
ReNode	35.9	73.6	72.8	66.9	83.9	95.1	88.1
Upsample	12.5	58.2	65.1	67.5	76.5	92.4	89.7
GraphSmote	22.2	66.4	68.9	62.1	79.4	93.4	89.4
GraphENS	<u>37.7</u>	72.2	73.2	63.5	74.6	94.7	82.3
TAM (G-ENS)	32.6	76.3	68.9	71.5	74.2	95.1	86.9
GraphSHA	51.6	76.9	66.0	65.4	76.5	93.8	92.1


Figure 4. Changing trend of F1 the increase of imbalance ratio with GCN.


		Upsample	12.5	58.2	65.1	67.5
		GraphSmote	22.2	66.4	68.9	62.2
80	100	GraphENS	<u>37.7</u>	72.2	73.2	63.5
)		TAM (G-ENS)	32.6	76.3	68.9	71.5
		GraphSHA	51.6	76.9	66.0	65.4
-score w on Cora		Table 3. C on Cora-L		icatic	on aco	cura



(a) Training set samples (b) Synthesized samples

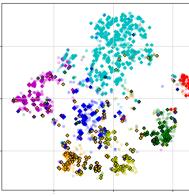
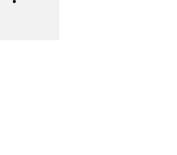



Figure 7. Visualization of GraphSHA on Cora-LT with GCN, where each node is colored by its label. In (a), the hardness of each training node is marked via the node size.

Contact: liwzh63@mail2.sysu.edu.cn

racy for each class