
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Towards Effective and Robust Graph Contrastive
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Abstract—Graph contrastive learning (GCL) has become the de-facto approach to conducting self-supervised learning on graphs for
its superior performance. However, non-semantic graph augmentation methods prevent it from achieving better performance, and it
suffers from vulnerability to graph attacks. To deal with these problems, we propose AEGCL to leverage graph AutoEncoder in Graph
Contrastive Learning which directly targets graph property reconstruction to boost GCL effectiveness and robustness. Specifically,
AEGCL has two distinctive characteristics, (1) a novel adaptive augmentation strategy based on motif centrality is proposed, which
leverages semantic significant higher-order graph property; (2) the original attributed graph is decoupled into feature graph and
topology graph to extract their dedicated information, and a simple AttnFuse is proposed to combine the two augmented graphs and
the two decoupled graphs. Graph autoencoder can thus be applied to the topology domain and raw attribute domain. Empirically,
extensive experiments on benchmark graph datasets show that AEGCL outperforms existing baseline methods in terms of
classification accuracy and robustness.

Index Terms—Graph Neural Networks, Self-supervised Learning, Contrastive Learning, Graph Representation Learning, Robustness.
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1 INTRODUCTION

G RAPH Neural Networks (GNNs) has become the yard-
stick to handle graph-structured data in the past few

years, with the maturing of deep neural network. Its appli-
cation involves all aspects of graph-related representation
learning from protein discovery to traffic prediction to name
a few [1], [2], [3], [4], [5], [6].

Nowadays, the main obstacle of GNNs lies in that the
methods are mostly devised for semi-supervised down-
stream tasks, which means adequate labeled data are re-
quired. However, it is hard to satisfy as annotated labels are
always scarce in real-world scenarios, and manual annota-
tion is too costly to implement. To tackle this problem, self-
supervised network embedding approaches emerge, which
leverage the supervision signal from the unlabeled data
itself. They can be roughly categorized into two classes,
i.e., graph contrastive learning (GCL) [7], where two graph
augmentations are generated and the mutual information
between positive pairs is maximized while the mutual in-
formation between negative pairs is minimized; and graph
autoencoder [8], where reconstruction of the original graph
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is directly leveraged.
Among them, GCL approaches dominate the commu-

nity for their superior performance on downstream tasks.
However, recent studies [7], [9], [10], [11] point out that
they might be vulnerable to graph attacks for that graph
properties are distorted during augmentation. Although
[9] integrates explicit adversarial transformation to graph
augmentations to remit this issue, it brings intolerant train-
ing time overhead, which heavily reduces model efficiency.
Therefore, an efficient method is required to improve GCL
robustness. Graph autoencoder, on the other hand, directly
targets at graph property reconstruction, which is expected
to boost the model robustness effectively [12].

As the most crucial part of GCL, graph augmentation
is determinant to model performance. However, unlike
images which can be augmented via semantic operations
like clipping or rotating [13], [14], [15], prevalent data
augmentation methods for graphs are either operations far
less intuitive like randomly dropping nodes and randomly
masking attributes [7], [11], or operations specified for a
certain domain which requires domain knowledge [16]. To
remit this issue, adaptive augmentations are proposed [17],
[18] to drop less important edges and node attributes based
on semantic edge/node centrality. Though semantic infor-
mation is implied, it might lead to sub-optimal results. For
one thing, all adaptive augmentations are based on node-
level centrality, while higher-order characteristics in graphs
which contain rich semantic information is not leveraged.
For another, as shown in Fig. 1, node degree usually follows
a long-tailed distribution in real-world graph scenarios.
Dropping less important nodes will force GNNs mainly
focus on scarce high-degree nodes, which exacerbates the
long-tailed effect and therefore prevents GCL from getting
better performance.

In view of these issues, we are naturally motivated to
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Fig. 1. Node degree ususally follows long-tailed distribution on real-world
datasets.

ask the following question:

How to leverage graph autoencoder and semantic higher-
order graph characteristics to boost the effectiveness and
robustness of GCL?

Inspired by some recent works [19], [20], [21], we pro-
pose AEGCL, which adopts motifs in graphs for adaptive
augmentation, and decouples node features and topology
structures then reconstructing them to leverage graph Au-
toEncoder in Graph Ccontrastive Learning. Specifically, to
force augmentation in GCL to gain semantic higher-order
graph characteristics, we first propose an intuitive and effec-
tive adaptive augmentation based on motif centrality. Then,
we find that a typical input graph of GNN is attributed
graph [1], [2], which means there is two-fold information,
i.e., node features derived from traditional feature engi-
neering and topology structures derived from the intrinsic
graph property. So graph reconstruction mainly lies in two
classes, i.e., node feature reconstruction and graph structure
recovery [8], [22], [23], [24]. Unlike traditional GNNs which
consider both simultaneously by propagating features along
with graph structures, we propose to decouple the original
graph into feature graph and topology graph, and extract
their specific embeddings. However, how to fuse the two de-
coupled graphs into the GCL structure remains a challenge.
We notice that GCL also has two augmentation graph views,
which can be conjoined with the two decoupled graphs
naturally. Inspired by this, we propose a learnable AttnFuse
module to fuse information from the two augmentation
graphs and the two decoupled graphs automatically. The
reconstruction objectives are defined as two fine-grained
reconstruction losses on topology and feature, which are
combined with the GCL objective in a multi-task learning
manner. In this way, AEGCL is expected to be robust to link
or feature attacks for that it leverages the two-fold ground-
truth information explicitly.

To sum up, we highlight our contributions as follows:

• We propose an effective and robust self-supervised
learning framework on graphs, AEGCL, by leverag-
ing AutoEncoder in Graph Contrastive Learning.

• We propose a novel adaptive augmentation method
based on motif centrality to capture higher-order
graph characteristics for graph contrastive learning,

which is semantically significant and can thus boost
GCL performance.

• Empirically, extensive experiments demonstrate the
effectiveness and robustness of AEGCL compared
with both self-supervised and semi-supervised
graph representation learning baseline methods.

The rest parts of this paper are organized as follows.
In Section 2, we review some related work. In Section 3,
we give the problem definition, main notations, and some
basic preliminaries about the model. In Section 4, we give
the details of AEGCL. In Section 5, we conduct experiments
to evaluate the effectiveness and robustness of AEGCL. In
Section 6, we conclude this paper with future work.

2 RELATED WORK

In this section, We briefly review three classes of related
work: self-supervised learning on graphs, graph attack, and
higher-order structure on graphs.

2.1 Self-Supervised Learning on Graphs
Labeled data are often scarce in real-world scenarios. To
tackle this challenge, one mainstream solution is to apply
self-supervised learning to vast unlabeled data. This idea
is popular from NLP [25], [26], [27] to CV [28], [29], [30],
[31] in recent years. Some previous works also apply self-
supervised learning to graph representation learning. They
are generally in two categories, namely, graph autoencoder
and graph contrastive learning.

Autoencoder [32], [33] refers to the paradigm of
“encoding-decoding” to recover graph properties. Com-
pared with GCL, graph autoencoder is easy to imple-
ment and faithful to ground-true graph properties. Tradi-
tional random-walk-based approaches like Deepwalk [34],
LINE [35] and Node2vec [36] can be regarded as shallow
graph autoencoders, as indicated in [37]. The goal of these
approaches is to learn node embeddings solely from graph
structure information, and the learned node embeddings
can be used for the downstream tasks directly. These meth-
ods, however, can not be customized for specific down-
stream tasks, which prevents them from better performance.
Recently, with the fast development of deep neural net-
works, graph autoencoder approaches are often transferred
from other deep learning domains like computer vision or
natural language processing. Kipf and Welling [12] apply a
VAE [38] structure where a simple 2-layer GCN is leveraged
as the encoder, and dot-product is leveraged as the decoder
to get a reconstructed topology graph as the self-supervised
task. Inspired by Transformer [39], Zhang et al. [22] take a
bold step by ignoring the graph’s topological structure and
propose a model solely based on Bert [25] with node feature
and graph structure reconstruction tasks. Likewise, Hu et
al. [23] propose a model imitating GPT [26] by consider-
ing the attributed graph generation task step-by-step. For
specific domains, Hu et al. [8] propose a model for biology
graphs with two recovery tasks including neighborhood
prediction and node attributes prediction. However, some
recent studies [37], [40] point out that graph autoencoder
methods fall behind graph contrastive learning methods by
a large margin.
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Contrastive learning [7], [41], [42] is another line of
approaches for self-supervised learning. It has been dom-
inating self-supervised learning in the literature for its ex-
pressivity and simplicity. It refers to the paradigm of making
pair-view representations to agree with each other under
proper data augmentations, which is also adapted from CV
to GNNs. Though a recent study [43] argues that compli-
cated graph augmentations are not that necessary in down-
stream fields such as recommendation as long as the uni-
formity and alignment of contrastive learning could be well
preserved, graph augmentation is still a research hotspot
for graph representation learning, as proper augmentation
can boost the GCL performance in practice [17]. Specifically,
Velickovic et al. propose DGI [44] which contrasts node-
local patches against global graph representations. Peng
et al. propose GMI [45] which maximizes graphical mu-
tual information for a more fine-grained contrastive loss.
Hassani et al. propose MVGRL [46] which maximizes in-
formation between the cross-view representations of nodes
and graphs. Zhu et al. propose GRACE [47] which adopts
the popular contrastive learning paradigm SimCLR [15]
in the computer vision domain to network embedding.
Furthermore, Zhu et al. propose GCA [17] which improves
GRACE with adaptive data augmentation to leverage graph
semantics. Thakoor et al. propose BGRL [48] which firstly
explores bootstrapping learning to graphs to reduce mem-
ory space. Different from these approaches, to the best of our
knowledge, we are the first to introduce graph autoencoder
to GCL. In our proposed AEGCL, we leverage attribute
recovery and topology reconstruction as two auxiliary tasks
to improve GCL robustness and effectiveness.

2.2 Graph Robustness
As the extensions of deep neural networks to graphs, GNNs
inherit the vulnerability of easily getting fooled by small in-
put perturbation, i.e., graph attacks [49], [50]. From another
perspective, graph attacks can be used to test the robustness
of GNN models. Attacks can be categorized into white-box
attacks, black-box attacks, and gray-box attacks based on
their knowledge over the entire graph [51], [52]. For the
white-box attack, the GNN parameters, node labels together
with graph information are all given to the attacker [53],
[54], [55], while for the black-box attack, only graph infor-
mation is visible [49], [50], [56] and for the gray-box attack,
the attacker only has limited knowledge about the victim
model [57], [58]. In this paper, instead of specializing in
network attacks on graphs, we only apply it deliberately
to test the robustness of different models. For a fair compar-
ison, we apply the gray-box attack nettack proposed in [49]
to test the GNN robustness for all reported experiments.
A recent work ARIEL [11] also considers robustness in the
context of GCL. However, it differs from our method as an
adversarial view is generated explicitly via PGD attack [59],
which brings heavy computational overhead, thus reducing
model efficiency. The proposed AEGCL, on the other hand,
directly targets lightweight graph property reconstruction,
which is expected to boost the model robustness effectively.

2.3 Higher-Order Structure on Graphs
Besides node-level and edge-level interaction on graphs,
researchers find that higher-order structure contains rich

TABLE 1
Summary of the main notations used throughout the paper.

Symbol Description

M, mi matrix, i-th row of the matrix
G attributed graph
V the set of nodes in the graph
E the set of edges in the graph
N = |V| number of nodes in the graph
A ∈ RN×N adjacency matirx of the graph
X ∈ RN×d raw features of the graph
Y ∈ RN×1 labels of nodes in the graph
f(X,A;Θ) GNN encoder with parameters Θ
S(·, ·) cosine similarity
Gf , Gt feature graph and topology graph
Xf , Xt ∈ RN×h node features of feature and topology graph
Af , At ∈ RN×N adjacency matrix of feature and topology graph
E ∈ RN×d′ node2vec embeddings
F,T ∈ RN×h feature embeddings and topology embeddings
H ∈ RN×h node embeddings from contrastive learning
Z ∈ RN×h final embeddings
X̃ ∈ RN×d reconstructed feature
X′, A′ attacked node features and adjacency matrix

semantic information which can boost model perfor-
mance [60]. Among them, the most widely studied higher-
order structure is motif, which is a subnetwork appearing
frequently in the original network [61], [62]. Motifs appear
in a diversity of graph genres from biochemistry to soci-
ology, and the research of such patterns often results in
discovering new graph properties. There exist some studies
which apply motif to graph analysis in the literature. In [63],
Lee et al. try to capture higher-order neighborhoods by
using weighted multi-hop motif adjacency matrices. In [64],
a motif-level generation is developed for that motif is an
essential feature in the community detection task. In [65],
Sankar et al. propose a motif convolution method which
captures semantic higher-order relationships to improve
the semi-supervised node classification. In [41], Qiu et al.
leverage motif ego network to learn universal properties
of graphs for graph pre-training. In [66], Rong et al. con-
duct graph representation learning by predicting contextual
motifs for transfer learning. Inspired by these works, we
hypothesize that motif-based graph augmentation can boost
GCL performance for it can capture higher-order graph
characteristics.

3 PRELIMINARIES

In this section, we first define graph contrastive learning and
the main notations used in the paper, then we give a brief
introduction to graph neural networks.

3.1 Problem Definition
Let G = {V, E} denote an attributed graph, where V =
{v1, v2, · · · , vN} is the node set with N nodes and E ⊆ V×V
is the edge set. The adjacency matrix and the feature matrix
are denoted as A ∈ {0, 1}N×N and X ∈ RN×d respectively,
where Aij = 1 iff (vi, vj) ∈ E . xi ∈ R1×d is the raw
attribute of node vi, and d is the raw feature dimension.
Given an attributed graph G with no avaliable labels, our
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goal is to train a graph encoder f(X,A;Θ) with X and A
as input. The output embeddings H = f(X,A;Θ) can be
directly applied to downstream tasks by training a Multi-
Layer Perceptron (MLP) in a freezing mode, or the trained
encoder f(X,A;Θ) can be trained end-to-end with an MLP
classifier in a full fine-tuning mode. More implementation
details are available in Section 5. The detailed notation table
is listed in Table 1.

3.2 Graph Neural Networks
With the fast development of deep learning, graph neural
networks have become the de-facto standard feature extrac-
tor for graph-structured data in recent years. Generally, it
follows the “propagation-transformation” pattern to extract
features from neighbor nodes iteratively to fuse embed-
dings:

h
(l+1)
t ← Transform

(
Propagate

∀s∈N (t)

(
h(l)
s ;h

(l)
t

))
, (1)

where h
(l)
t is the node embedding of node vt at the (l)-

th layer, N (t) is the node set of vt’s neighbor nodes. In
our scenarios, any kind of GNN can be applied here as the
feature extractor, and we choose a two-layer GCN [1] as the
backbone model structure for its efficiency and generaliz-
ability, which can be formalized as:

f(X,A;Θ) = H(2) = Âσ(ÂXW(1))W(2), (2)

where Â = D̃−1/2(A+ IN )D̃−1/2 with D̃ being the degree
matrix of A + IN and IN being the identity matrix, W(l)

are learnable weight matrices (i.e., Θ) and σ(·) is activation
function.

4 METHODOLOGIES

In this section, we present AEGCL in detail. The overall
flowchart of AEGCL is sketched in Fig. 2. For the initial
graph G = (X,A), the key idea is to generate feature graph
Gf and topology graph Gt via knn on raw features and
node2vec embeddings to extract embeddings F dedicated
to node features and embeddings T dedicated to graph
structures via GNN1 and GNN2, respectively. The two-
fold information is fused with motif centrality-based GCL
embeddings H1 and H2 generated from shared GNN3 via
AttnFuse, after which we get Z1 and Z2. The loss function is
defined as the weighted sum of contrastive loss Lcont, raw
feature recovery loss Lfeat, and edge reconstruction loss
Ledge, which are combined in a multi-task learning manner.
The trained encoder GNN3 will be used for downstream
tasks.

4.1 Feature and Topology Graph Construction
In order to decouple the two-fold node feature and graph
topology information, following [19], we refer to k-nearest
neighbor (kNN) to construct orthogonal feature graph Gf
and topology graph Gt. Specifically, for feature graph Gf ,
we simply choose the top-k nearest nodes of each node in
the raw attribute space X via cosine similarity:

S(vi, vj) =
xi · xj

|xi||xj |
. (3)
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Fig. 2. The overall framework of AEGCL. Firstly, we generate feature
graph Gf and topology graph Gt using knn on raw attributes and
node2vec embeddings, together with two graph augmentations G1 and
G2 using motif centrality. Then, feature graph and topology graph are
fed into dedicated GNN (GNN1 and GNN2) to capture their respective
information, while two graph augmentations are fed into a shared GNN
(GNN3). Finally, the learned feature embeddings F and topology em-
beddings T are aggregated with augmented graph embeddings H1, H2

via AttnFuse. The trained encoder GNN3 will be used for downstream
tasks.

For topology graph Gt, we first perform node2vec [36] on the
initial graph topology structure to get node2vec embeddings
E ∈ RN×d′

for each node, and then perform kNN on
E in the same way as the feature graph. The reason for
using node2vec is that it is a PageRank-like random walk
solely based on topology structure so it can exploit topology
information to form node embeddings.

It is worth noting that by setting k to a relatively small
number, the feature graph and topology graph become very
sparse compared to the initial graph, for that the number of
edges is kN in both graphs. Specifically, for the Amazon-
Photo dataset with k = 5, the number of edges in both
feature and topology graphs is only 16% of that in the
original graph. Besides, since we choose k nearest neighbors
evenly for each node, the feature graph and the topology
graph could avoid centrality biases caused by the long-
tailed distribution. The detailed analysis of hyper-parameter
k is performed in Section 5.

4.2 Adaptive Contrastive Learning Module with Motif
Centerality
In this section, we apply the SimCLR [15] paradigm as an
example to describe AEGCL since it is the state-of-the-art
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contrastive learning framework [17].

4.2.1 SimCLR overview
Given a graph G = (X,A), two arbitrary augmentation
views G1 = (X1,A1) and G2 = (X2,A2) are firstly gen-
erated via random edge dropping, attribute masking etc.
Then they are fed into a shared GNN encoder, after which
we get node embeddings H1 = f(X1,A1;Θ) ∈ RN×h and
H2 = f(X2,A2;Θ) ∈ RN×h. The key of SimCLR is to
define the positive and negative node pairs. Take vi in view
G1 as an example, they are defined as follows:

Pos: Node vi in G1 and G2.
Neg: (1) Intra-view: node vi and another node vj in view

G1;
(2) Inter-view: node vi in view G1 and another node
vk in view G2.

The contrastive loss can thus be defined with InfoNCE [67]
following [17] as:

l1(ui,vi) = log
pos

pos + neg
, (4)

pos = exp{S(ui,vi)/τ}, (5)

neg =
∑
j ̸=i

exp{S(ui,vj)/τ}+
∑
k ̸=i

exp{S(ui,vk)/τ}, (6)

where u∗ and v∗ are node embeddings of v∗ in G1 and G2
respectively, and τ is a temperature parameter. The objective
for node vi in view G2, i.e., l2(vi,ui) can be defined in the
same way.

4.2.2 Motif-based adaptive augmentation
Different from the random augmentation discussed above,
adaptive augmentation devotes to generating graph views
which are adaptive to the input graph so that it can re-
flect the graph’s intrinsic properties [17]. Specifically, edge
dropping and attribute masking are still adopted, but the
dropping and masking probability is skewed for less im-
portant edges or attributes, and the importance is based on
centrality, which could be degree, eigenvector, or PageR-
ank. It will force the model to highlight important graph
structures. However, due to (1) prevalent node centrality
measures are all based on low-level node connection, which
leaves semantic higher-order graph structure agnostic; (2)
in real-world scenarios node degree always follows a long-
tailed distribution, i.e., most nodes have a small degree,
thus dropping less important nodes can easily degenerate
to trivial random drop, which is not beneficial to gain
robustness. Targeted to remit these two issues, we first
propose to leverage the higher-order information at the level
of subgraph, e.g., motif [61], then we argue that dropping
more important edges [68] can force the model to learn
essential information from the graph, which can help boost
model performance.

Motif centrality. Motif is defined as a small dense sub-
graph pattern occurring in a complex network at numbers
that are significantly higher than those of randomized sub-
graphs preserving the same degree of nodes [69], [70]. It is
a frequently-used representation for small dense subgraph
patterns. Therefore, we propose a brand new adaptive aug-
mentation method using motif, called motif centrality.
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a4

Fig. 3. Illustration of motif centrality. Left: original unweighted graph.
Right: weighted graph according to triangle motifs. Thickness of edges
represents edge weight.

We leverage the triangle motif to calculate the motif
centrality as it is the most simple and representative higher-
order graph structure and has been wildly applied in the lit-
erature [21], [60], [69], [70]. Specifically, for the unweighted
original graph, we count the number of triangle motifs to
which each edge belongs, and use this frequency as edge
weight. Like in Fig. 3, (a2, a5) belongs to three triangle mo-
tifs (a2, a5, a3), (a2, a5, a4), (a2, a5, a1), so the edge weight
between (a2, a5) is 4 while edge (a1, a7) does not belong
to any triangle motif, its edge weight remains 1. Then the
edge dropping can be applied according to the weights as
centrality measure.

TABLE 2
Demo experiment about the effect of the two improvements on Cora.

Pipeline GCA GCAvr1 GCAvr2 GCAvr3

Accuracy(%) 78.10 80.10 79.40 80.70

A demo empirical study on real-world dataset Cora
(Table 2) shows that our two improvements, i.e., (1) motif
centrality, (2) drop more important edges with a higher
probability, can both improve the performance of GCA.
Here, GCA is the initial GCA model with degree centrality
adaptive augmentation which performs the best over degree
centrality, eigenvalue centrality, and PageRank centrality
proposed in [17], GCAvr1 is the variant with (1), GCAvr2

is the variant with (2) and GCAvr3 is the variant with both
(1) and (2). Detailed experiments can be found in Section 5.

4.3 Fusion Strategy

Feature graph and topology graph generated from knn are
extracted by two GNN encoders to get embeddings F and
T dedicated for node features and graph structures. Node
embeddings H1 and H2 are also generated via a shared
GNN encoder from a GCL module with motif centrality-
based augmentations. Now we need to design a module
to fuse them such that (1) InfoNCE loss is still adoptable
to preserve the GCL structure; (2) graph reconstruction can
be easily applied; (3) information from both sides can be
fused automatically. We design a simple AttnFuse based on
attention mechanism to fuse symmetric embedding pairs
(T, H1) and (F, H2) to form the final embeddings via
Z1 = AttnFuse1(T,H1) and Z2 = AttnFuse2(F,H2).
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And we take the formation of Z1 as an example:

ωT = qT tanh(WTT + b), (7)

ωH1
= qT tanh(WHT

1 + b), (8)

αT = softmax(ωT ) =
exp(ωT )

exp(ωT ) + exp(ωH1)
, (9)

αH1
= softmax(ωH1

) =
exp(ωH1

)

exp(ωT ) + exp(ωH1
)
, (10)

Z1 = αTT+ αH1H1. (11)

Here, q ∈ Rh′×1 is the shared attention vector, W ∈ Rh′×h

is a trainable weight matrix and b ∈ Rh′×1 is a bias vector.
The fusion of AttnFuse(F, H2) is performed in the same
way and we can get Z2. Now, z1i and z2i can be used to
substitute ui and vi in Eq. (4).

4.4 Objective Function

In order to introduce graph autoencoder to GCL, we
devote to considering the GCL loss InfoNCE and reconstruc-
tion loss in a multi-task learning way.

4.4.1 Contrastive objective function
Based on the single node objective loss Eq. (4), we can define
the overall contrastive loss function following [17] as:

Lcont =
1

2N

N∑
i=1

[l1(z1i , z2i) + l2(z2i , z1i)]. (12)

4.4.2 Reconstruction objective function
The key to graph autoencoder is to leverage graph property
reconstruction as the objective function. Here, hence we
have already decoupled the original attributed graph into
a topology graph and a feature graph, it is natural to
reconstruct the original edge and attribute based on the
two decoupled graphs. And the reconstruction losses can
be conjoint with the contrastive learning loss in a multi-task
learning way. From another perspective, the two reconstruc-
tion losses can be interpreted as two regulation terms to
restrict the contrastive learning [24]. Specifically, to maintain
the model’s simplicity and make the analysis easier, we
adopt vanilla but effective designs. For edge reconstruction,
we use inner production to implement the edge generator
on topology graph embeddings as:

Ã = softmax(T ·TT), (13)

Therefore, the loss function for training this edge generator
can be defined as:

Ledge =
1

N
∥A⊙(Ã−A)∥2, (14)

where ⊙ is the hadmard product such that Ledge only pays
attention to edges existing in the original graph follow-
ing [71], [72]. Similarly, we can define the loss function for
raw attribute reconstruction as the mean squared error:

Lfeat =
1

N

∑
i∈V
∥x̃i − xi∥2, (15)

where X̃ = MLP(F) is the reconstructed raw attributes
using feature graph embeddings.

Algorithm 1 Training process for AEGCL
Input: G = (X,A)
Output: trained GCN encoder f(X,A;Θ)

1: Perform node2vec on A to get E
2: Perform knn on X, E to get Gf , Gt
3: while not converge do
4: Obtain embedding F of Gf using encoder ff
5: Obtain embedding T of Gt using encoder ft
6: Generate two graph augmentations G1, G2 via adap-

tive motif centrality
7: Obtain embeddings H1, H2 using encoder f
8: Obtain aggregated embeddings Z1, Z2 using

AttnFuse1(F,H1) and AttnFuse2(T,H2)
9: Back propagate via Eq. (12), Eq. (14), Eq. (15), Eq. (16)

10: end while

Combining the two constraints as regulation terms with
the contrastive loss function, we get the following overall
objective function:

L = Lcont + βLedge + γLfeat, (16)

where β and γ are weight parameters of the constraint
terms. The back propagation is adopted to solve the opti-
mization of the overall objective function in an end-to-end
manner without any labeled data.

4.5 Complexity Analysis
The entire training process of AEGCL is shown in Algo-
rithm 1, based on which we analyze the time complexity.
It is worth mentioning that the feature graph Gf and the
topology graph Gt in line 1-2 could be obtained before
training. Assuming h is the hidden dimension, L is the
number of GCN layer, |E| is the number of edges, and N
is the number of nodes. For line 4-7, Gf , Gt, G1, G2 are
fed into GNNs with time complexity O(hL|E| + Nh2L),
as GNN costs O(h|E|) to propagate features and O(Nh2)
to multiply by the weight matrix in each layer. For line 8,
the time complexity for each AttnFuse module is O(Nh).
Therefore, a forward pass of AEGCL has a time complexity
of O(hL|E| + Nh2L + Nh). As L is always small in GCN
(e.g., L = 2 in our case), the time complexity is deduced to
O(h|E|+Nh2+Nh) = O(h|E|+Nh2), which is lightweight.

5 EXPERIMENTS

In this section, extensive experiments are conducted to
evaluate the effectiveness and robustness of AEGCL.

5.1 Experimental Setup
5.1.1 Datasets
The main experiments are conducted on six publicly avail-
able 10,000-scale real-world graph benchmarks widely used
in the literature from PyTorch Geometric library [73]. The
statistical descriptions of these datasets are shown in Table 3.
We give a brief description of the datasets as follows.

• Amazon-Photo and Amazon-Computers [74] are
two co-purchase networks constructed from Amazon
where nodes represent products and edges represent
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TABLE 3
Statistics of datasets used in experiments.

Datasets #Nodes #Edges #Features #Classes

Amazon-Photo 7,650 119,081 745 8
Amazon-Computers 13,752 245,861 767 10
Coauthor-CS 18,333 81,894 6,805 15
PubMed 19,717 44,338 500 3
DBLP 17,716 105,734 1,639 4
CoraFull 19,793 65,311 8,710 70

co-purchase relations. Each product node has a raw
bag-of-words feature encoding product reviews and
is labeled with its category.

• Coauthor-CS [74] is an academic network where
nodes represent authors and edges represent co-
author relationships. Each author node has a raw
bag-of-words feature encoding keywords of his/her
publication and is labeled with the most related
research field.

• PubMed [75], DBLP, and CoraFull [76] are three aca-
demic networks where nodes represent papers and
edges represent citation relations. Each paper has a
raw bag-of-words feature encoding its keywords and
is labeled with its related research area.

5.1.2 Baselines

We compare AEGCL with two types of baselines,
namely self-supervised approaches and semi-supervised
approaches to show its effectiveness. Self-supervised meth-
ods include node2vec [36], Graph Rec [22], GraphSAGE [77],
GAE [12], VGAE [12], DGI [44], GMI [45], MVGRL [46],
GRACE [47], ARIEL [11], SimGCL [43], GCA [17], and
BGRL [48]. Semi-supervised methods include GCN [1],
GAT [2], GraphBert [22], and LINKX [20]. We also report
the performance obtained using an MLP classifier on raw
node features (Raw features).

5.1.3 Configurations

All the baselines are tested based on official/popular im-
plementations with parameters suggested by their papers,
and we also further tune them to get optimal perfor-
mance. For our AEGCL, we set the hidden layer dimension
of GCN as {128, 256, 512} and output layer dimension
as {64, 128, 256}. We use Adam as the optimizer with
learning rate as {0.0005, 0.001, 0.01} and weight decay
as {1e − 4, 1e − 5}. The candidate activation functions
in GCN are {ReLU,LeakyReLU, PReLU,RReLU}. The
weights β and γ for Ledge and Lfeat are searched in
{0, 1e − 3, 1e − 2, . . . , 1e + 3}, and k in k-nearest neighbor
graph is searched in {1, 2, . . . , 10}. The detailed hyper-
parameter specification for each dataset is elaborated in
Table 4 for repeatability. Here, hid dim, out dim, attn dim
and n2v dim correspond to the dimensions of the hidden
layer of GCN encoder, the output layer of GCN encoder,
the attention vector, and node2vec embeddings respectively;
τ is the temperature parameter in Eq. (4); lr and weight-
decay are the learning rate and weight decay of Adam
optimizer; k, β and γ are three hyper-parameters which
will be discussed in Section 5.5. The evaluation metric in

term of node classification accuracy is reported for all the
experiments.

5.2 Node Classification

As self-supervised approaches and semi-supervised ap-
proaches are both leveraged as baseline methods, for a
fair comparison, we also adopt two modes of AEGCL, i.e.,
freezing mode AEGCL and full fine-tuning mode AEGCL-ft,
as discussed in Section 3. The main difference between the
two modes is that, after the self-supervised model training
with the whole graph in a transductive setting, we apply
the learned embeddings directly to downstream tasks in the
freezing mode, while in the full fine-tuning mode, we treat
the self-supervised learning as the pre-training phase imitat-
ing Bert [25], and then fine-tune its parameters based on the
downstream node classification task. In other words, data
labels are agnostic to the model in the freezing mode, while
a fraction of them (training set) are visible in the full fine-
tuning mode. In the evaluation phase, a l2-regularized MLP
is leveraged in both modes as the classification head with
Adam optimizer of learning rate 0.01 for the downstream
task as in [17], [41]. For the PubMed dataset, we apply
public splits [1] to split it into training/validation/testing
sets for the downstream node classification tasks. For the
other five datasets, we randomly split them into train-
ing/validation/testing sets with proportions 10%, 10%, 80%
respectively following [17], [48] since there are no publicly
accessible splits. We follow [78] to report the testing set
performance when the performance on the validation set
achieves the best result. The results in terms of accuracy are
reported in Table 5 for the freezing mode and Table 6 for the
full fine-tuning mode, respectively. Note that GCA-DE(vr.)
is the GCA-DE variant which drops more important edges
with a higher probability as proposed in Section 4.2.2, and
GCA-MO is the GCA variant with motif centrality-based
adaptive augmentation.

Based on both tables, we can see that our proposed
method in freezing mode (AEGCL) and in full fine-tuning
mode (AEGCL-ft) both outperform all the baseline methods
on almost all datasets except on CoraFull in the freezing
mode.

Specifically, for the freezing mode, adaptive augmenta-
tions GCA-DE, GCA-EV, and GCA-PR can boost the per-
formance of random edge dropping and attribute mask-
ing. And our proposed motif centrality-based augmentation
GCA-MO can further improve model performance, which
we attribute to motif centrality can capture higher-order
graph semantic structure. Besides, we find that GCA-DE
(vr.) generally outperforms GCA-DE, which demonstrates
the effectiveness of dropping more important edges as dis-
cussed in Section 4.2.2. Overall, AEGCL can achieve consis-
tent improvements over all datasets, especially on PubMed
with almost 2% performance gain, which demonstrates the
stability and universality of combining graph autoencoder
with GCL.

For the full fine-tuning mode, it is intuitive that the
semi-supervised methods/full fine-tuned methods gener-
ally perform better than self-supervised methods or their
self-supervised counterparts for that a fraction of labeled
data is accessible during training. And we can see that the
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TABLE 4
Specified model Hyper-parameters.

Datasets hid dim out dim attn dim n2v dim σ τ lr weight-decay epochs k β γ

Amazon-Photo 512 256 16 128 ReLU 0.3 0.001 1e-5 2,000 5 1 1
Amazon-Computers 256 128 16 128 PReLU 0.2 0.01 1e-5 2,000 5 0.1 0.001
Coauthor-CS 512 256 16 128 PReLU 0.4 0.0005 1e-5 2,000 6 0.001 0.01
PubMed 512 256 16 128 ReLU 0.2 0.001 1e-5 2,000 7 1 1
DBLP 512 256 16 128 PReLU 0.4 0.0005 1e-5 1,500 6 1 0.1
CoraFull 256 128 16 128 ReLU 0.2 0.001 1e-5 1,500 5 0.1 0.1

TABLE 5
Node classification results (%) and their standard deviations for 5 runs on six real-world datasets obtained by the self-supervised learning

methods. The best results are highlighted in boldface. X and A correspond to node features and graph adjacency matrix respectively. OOM
indicates Out-Of-Memory on a 24GB GeForce GTX 3090 GPU.

Method Training Data Amazon-Photo Amazon-Computers Coauthor-CS PubMed DBLP CoraFull

Raw features X 72.27±0.00 73.81±0.00 90.37±0.00 73.42±0.00 71.62±0.00 31.37±0.00
node2vec A 87.76±0.10 84.39±0.08 85.08±0.03 62.13±0.05 77.14±0.12 49.49±0.12
Graph Rec X,A 77.81±0.21 82.48±0.38 90.39±0.17 72.78±0.26 75.60±0.33 22.13±0.19

GAE X,A 91.62±0.13 85.27±0.19 90.01±0.71 73.74±0.28 79.73±0.47 54.25±0.28
VGAE X,A 92.20 ±0.11 86.37±0.21 92.11±0.09 75.17±0.18 80.81±0.20 55.82±0.31
DGI X,A 91.61±0.22 83.95±0.47 92.15±0.63 76.78±0.33 79.51±0.86 55.38±0.39
GMI X,A 90.68±0.17 82.21±0.31 OOM 79.90±0.49 78.43±0.77 55.97±0.28
MVGRL X,A 91.74±0.07 87.52±0.11 92.11±0.12 79.35±0.18 81.26±0.26 57.08±0.19
BGRL X,A 91.09±0.33 88.21±0.39 91.97±0.20 80.03±0.42 82.43±0.55 57.42±0.25
GRACE X,A 91.13±0.27 87.24±0.37 92.68±0.12 79.46±0.26 82.59±0.93 58.21±0.26
ARIEL X,A 91.80±0.24 87.07±0.33 92.39±0.28 74.23±0.82 81.01±0.22 57.41±0.73
SimGCL X,A 91.09±0.34 82.58±0.27 92.34±0.20 75.20±0.93 78.18±0.35 54.59±0.88
GCA-DE X,A 91.36±0.20 87.59±0.33 92.70±0.17 79.43±0.23 82.62±0.77 57.62±0.16
GCA-EV X,A 91.34±0.25 87.64±0.47 92.73±0.15 79.38±0.32 82.72±0.83 57.57±0.20
GCA-PR X,A 91.25±0.28 87.49±0.43 92.69±0.10 79.35±0.24 82.61±0.86 57.73±0.23

GCA-MO X,A 91.53±0.31 87.68±0.37 92.71±0.08 79.58±0.27 82.95±0.86 57.79±0.15
GCA-DE (vr.) X,A 91.47±0.25 87.62±0.42 92.68±0.10 79.78±0.31 82.75±0.66 57.68±0.18
AEGCL X,A 92.65±0.32 88.38±0.25 92.76±0.36 80.42±0.40 84.03±0.51 57.86±0.29

TABLE 6
Node classification results (%) and their standard deviations for 5 runs on six real-world datasets obtained by semi-supervised/fine-tuned methods.

The best results are highlighted in boldface. X, A and Y correspond to node features, graph adjacency matrix and node labels respectively.

Method Training Data Amazon-Photo Amazon-Computers Coauthor-CS PubMed DBLP CoraFull

GCN X,A,Y 92.42±0.22 86.51±0.54 93.03±0.31 78.89±0.30 79.17±0.60 56.91±0.28
GAT X,A,Y 92.56±0.35 86.93±0.29 92.31±0.24 78.93±0.30 78.56±0.46 45.23±0.30
GraphBert X,A,Y 90.69±0.06 85.27±0.17 91.27±0.10 79.30±0.07 76.28±0.15 25.37±0.18
LINKX X,A,Y 84.46±0.83 81.89±0.64 78.16±0.69 58.13±0.30 72.36±0.52 37.37±0.88
GRACE-ft X,A,Y 92.82±0.17 89.38±0.23 93.24±0.15 78.35±0.18 82.91±0.42 63.37±0.27
GCA-DE-ft X,A,Y 92.78±0.14 89.35±0.18 93.32±0.10 78.55±0.24 83.02±0.36 63.35±0.15
GCA-EV-ft X,A,Y 92.74±0.21 89.41±0.21 93.28±0.09 78.50±0.22 82.88±0.30 63.42±0.21
GCA-PR-ft X,A,Y 92.63±0.15 89.25±0.26 93.24±0.13 78.51±0.29 82.95±0.31 63.44±0.18

AEGCL-ft X,A,Y 93.35±0.30 89.89±0.18 93.50±0.31 80.53±0.55 84.10±0.72 64.08±0.39

AEGCL variant in the full fine-tuning mode (AEGCL-ft)
again performs the best. Besides, it is interesting to see that
LINKX which is also dedicated to decomposing the graph
into orthogonal feature and topology components does not
perform as we expect. We analyze the reason lies in that it
adopts simple MLP instead of GNN to encode the two-fold
information, which damages the representation ability.

5.3 Ablation Study
We conduct a series of ablation studies to show how each
component affects the model. Note that the comparison be-
tween GRACE, GCA-DE, GCA-EV, GCA-PR, GCA-MO, and

GCA-DE(vr.) in Table 5 has demonstrated the effectiveness
of dropping more important edges and motif centrality-
based adaptive augmentation. Here, we further conduct the
ablation study by zooming in on three aspects, namely the
reconstruction method, graph augmentation pattern, and
aggregation pattern. The results are shown in Table 7, where
vr1 to vr6 means six variants of the AEGCL method.

5.3.1 Graph autoencoder

Two folds of graph autoencoder are leveraged in AEGCL,
i.e., edge reconstruction and raw feature reconstruction.
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TABLE 7
Ablation study results (%) on five real-world datasets.

Variants Rec. Method Aug. Pattern Aggrga. Pattern Amazon-Photo Amazon-Computers Coauthor-CS PubMed DBLP
edge feat. motif other AttnFuse mean

vr1 ! ! - - - - 71.42 80.42 88.63 72.60 75.59
vr2 - - ! - - - 91.40 87.64 92.73 79.50 82.72
vr3 ! - ! - ! - 92.35 87.30 92.57 79.30 81.09
vr4 - ! ! - ! - 92.14 86.98 92.66 77.50 83.31
vr5 ! ! - ! ! - 92.37 86.89 92.67 80.30 81.85
vr6 ! ! ! - - ! 92.43 85.89 92.51 79.70 81.85

AEGCL ! ! ! - ! - 92.65 88.38 92.76 80.40 84.03
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Fig. 4. The attention changing trends w.r.t. epochs on Amazon-Photo.

Here, we test their effectiveness by disabling either or both
of them, by setting β or γ to 0.

From the comparison between AEGCL and
vr2/vr3/vr4, we can see that simultaneously considering
two-fold graph autoencoder tasks — edge reconstruction
and feature reconstruction — boosts the model performance.
And different datasets show different sensitivity of the two
reconstruction terms, possibly due to intrinsic data
distribution. Quantitative analysis of β and γ is elaborated
in Section 5.5.

5.3.2 Graph augmentation pattern

We also test how the motif centrality-based adaptive aug-
mentation method contributes to the final performance of
AEGCL. Specifically, we test its performance against degree
centrality, eigenvector centrality, and PageRank centrality-
based adaptive graph augmentation methods proposed in
GCA. And the item “other” in the table means the best
variant of the three.

From the comparison of vr5 and AEGCL, we can see
that our motif centrality outperforms other adaptive graph
augmentation methods.

5.3.3 Aggregation pattern

We also conduct experiments to validate the effectiveness
of the attention-based AttnFuse module when aggregating
node feature embeddings F and graph topology embed-
dings T with augmented node embeddings H1 and H2

from graph contrastive learning methods. And we compare
AttnFuse against mean operator. We also show the changing
trends of the attention value in AttnFuse on the Amazon-
Photo dataset, as shown in Fig. 4.
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Fig. 5. Network attack results on Amazon-Photo.

From the comparison between vr6 and AEGCL in Ta-
ble 7, we can see that the AttnFuse module generally per-
forms better than the mean operator, for that it can leverage
the important information from topology/feature graph and
augmented graph counterparts automatically. From Fig. 4,
we can see that the attention of topology graph and feature
graph together with the two augmented graphs converge
to distinct values, which illustrates that the two augmented
graphs play different weight roles, and the AttnFuse module
can distinguish them automatically.

Besides, we also design a variant (vr1) which does not
apply contrastive learning but only leverages two recon-
struction tasks. And we can see that vr1 performs the worse.
It demonstrates the effectiveness of the whole contrastive
learning schema.

5.4 Network Attack

Since the proposed AEGCL method leverages the node
feature reconstruction and graph topology reconstruction
explicitly, it is intuitive to wonder to what extent can the
two-fold information be preserved, i.e., the robustness of
AEGCL. Therefore, experiments are conducted under the
graph attack dedicated to node features or graph topology,
or both. Here, we apply single-node direct evasion attack
nettack proposed in [49], where the trained GNN encoder
f(X,A;Θ) remains unchanged throughout the attack. The
attacker nettack takes the original node features X, the
original graph adjacency matrix A, the node labels Y, the
target node vt and the trained GNN encoder f(X,A;Θ) as
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Fig. 6. Hyper-parameter analysis of AEGCL w.r.t. weight coefficients β, γ and k for knn on Amazon-Photo.

inputs and generates perturbed (attacked) node features X′

and graph adjacency matrix A′, i.e.,

X′,A′ = nettack(X,A, vn, f(X,A;Θ)), (17)

then the embeddings of the attacked graph is

Z′ = f(X′,A′;Θ). (18)

During the experiment, we set the attack perturbation in-
tensity nperturb to 1 and randomly select 500 nodes as
the attack target. The results on the Amazon-Photo dataset
are shown in Fig. 5. Here, AEGCL (w/o feat) stands for
the variant which only aggregates topology graph with
graph augmentations, and AEGCL (w/o topo) stands for
the variant which only aggregates feature graph with graph
augmentations.

From the figure, we can see that when suffering the
attack, the performance of the semi-supervised method
namely GCN drops the fastest, which conforms to the con-
clusion in [51]. For the other five self-supervised methods,
the robustness of GCA is the worst, as it does not train
the two-fold node feature and graph topology information
explicitly. By contrast, the performances of AEGCL (w/o
feat), AEGCL (w/o topo), and AEGCL are better. When
leveraging only node feature or graph topology information
during training, we can see that the performance of AEGCL
(w/o feat) shows superior result under sole link attack
while AEGCL (w/o topo) shows superior result under
sole feature attack. Although it would be premature to
conclude that the topology reconstruction-based and raw
feature reconstruction-based graph autoencoders are bound
to improve model robustness since only nettack is tested, the
results do demonstrate that the model stability is preserved
when facing single-node direct evasion attack. And we at-
tribute it to leveraging the feature and topology information
explicitly.

5.5 Hyper-parameter Analysis
We conduct this experiment to investigate the sensitivity of
AEGCL on different hyper-parameters, i.e., multi-task learn-
ing parameters β, γ, and k in knn leveraged to construct
feature graph and topology graph.

5.5.1 Analysis of weight coefficients β and γ

We test the coefficients for edge and feature reconstruction
weights β and γ in Eq. (16) by varying both of them in range
{0, 0.001, 0.01, 0.1, 1, 10, 100, 1000}. The results are shown
in Fig. 6(a) for Amazon-Photo, from which we can see that
with the increase of single β or γ, the performances show a
firstly-raising-then-dropping trend. The best performance is
obtained when β and γ are in range {0.1, 1, 10}. Generally
speaking, the model is stable for that its relative perfor-
mance perturbation range is only 1.76% w.r.t. β and γ.

5.5.2 Analysis of k-nearest neighbor graph k

We need to sample k neighbor nodes for each node in
raw feature space and node2vec embedding space for the
feature graph and topology graph. Here, we test k in the
range from 1 to 10 for all the datasets in Fig. 6(b). From the
figure, we can see that the accuracy is relatively low when
k=1 for all the datasets, especially on DBLP. By increasing
k, the accuracy rises, and it becomes stable when k is in
the range from 4 to 7, after which it starts to drop a little.
This may be because when k is low, the generated feature
graph and topology graph are not informative enough as
few neighbors are considered. And when k is too large,
more noisy neighbors are introduced to the two graphs,
which might confuse the encoder when distilling feature or
topology information. We conduct a hyper-parameter search
of k in the range from 4 to 7 in practice for the six datasets,
which is given in Table 4.

5.6 Indepth Analysis about AEGCL
5.6.1 Analysis of feature and topology graph construction
Apart from applying the knn algorithm, which is wildly
adopted in the literature [19] to construct the feature and
topology graphs, we also explore other methods for the
graph construction, including fixed threshold and learnable
threshold. Given pairwise similarity matrices of node2vec
embeddings and raw node attributes, the fixed threshold
is implemented via selecting the top-k most similar node
pairs as generated edges, where k is the number of edges in
the raw graph; and the learnable threshold is implemented
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TABLE 8
Analysis of different motifs on six real-world datasets. Node

classification accuracy (%) is reported.

Datasets 3-clique 4-clique 5-clique

Amazon-Photo 92.65 92.58 92.21
Amazon-Computers 88.38 87.76 87.58
Coauthor-CS 92.76 92.70 92.61
PubMed 80.42 79.97 79.83
DBLP 84.03 82.71 82.12
CoraFull 57.86 57.68 57.48

via training a dynamic threshold where node pairs whose
similarities are larger than the threshold will be generated
as edges. The results are illustrated in Fig. 7. From the figure
we can see that the knn method still achieves the best per-
formance, and the fixed threshold and learnable threshold
methods perform slightly worse than the knn method. We
attribute this to the fact that by setting a threshold, the
constructed graphs easily degenerate to the original graph,
which may not provide sufficient information for training
the model.

5.6.2 Analysis of other motifs
Apart from the triangle motif (3-clique motif), we also
conduct an experiment on other motifs, including 4-clique
motif and 5-clique motif, which is shown in Table 8. From
the table, we can see that the accuracy drops from 3-clique
motif to 5-clique motif on the six datasets. We attribute this
phenomenon to the fact that the complex 5-clique motif is
scarcer than the simple 3-clique motif, which results in the
motif centrality being more uniform across the graph. Nev-
ertheless, we can see that using the 5-clique motif can still
achieve competitive results compared with the baselines.

5.7 Discussion about Model Generalizability

We discuss the generalizability of AEGCL in this section
focusing on other node-level downstream tasks and other
kinds of networks, like protein network, which is highly
dependent on the graph geometry.

5.7.1 Node clustering
Follwing [79], we conduct node clustering by training a
k-means algorithm on the node embeddings learned by

TABLE 9
Node clustering results in terms of NMI and ARI on the

Amazon-Computers dataset.

Method NMI ARI

GAE 0.441±0.000 0.258±0.000
VGAE 0.423±0.000 0.238±0.000
DGI 0.318±0.002 0.165±0.002
MVGRL 0.244±0.000 0.141±0.000
BGRL 0.484±0.000 0.295±0.000
GCA 0.426±0.000 0.246±0.000
AEGCL 0.486±0.001 0.308±0.002

TABLE 10
Link prediction results in terms of Area Under the Receiver Operating
Characteristic Curve (ROC AUC) (%) and Average Precision (AP) (%)

on the Amazon-Photo dataset.

Method ROC AUC AP

Raw features 88.44±0.09 85.86±0.06
node2vec 96.31±0.10 92.37±0.13
Graph Rec 96.90±0.09 96.42±0.11
GAE 89.59±0.14 89.29±0.08
VGAE 85.73±0.13 85.80±0.09
GCA 98.21±0.05 97.88±0.07
AEGCL 98.26±0.05 97.95±0.06

TABLE 11
Node classification results in terms of Micro-F1 (%) on inductive task

with protein network PPI.

Method Training Data PPI

Raw features X 42.2
GraphSAGE-GCN X,A 46.5
GraphSAGE-mean X,A 48.6
GraphSAGE-LSTM X,A 48.2
GraphSAGE-pool X,A 50.2
DGI X,A 63.80±0.20
GMI X,A 65.00±0.02
BGRL X,A 68.98±0.14
GRACE X,A 66.20±0.10
AEGCL X,A 69.37±0.18

GAT X,A,Y 97.30±0.20

different models, where k is set to the number of classes. The
results in terms of normalized mutual information (NMI)
and adjusted rand index (ARI) on Amazon-Computers are
reported in Table 9. It is clear to see that AEGCL outper-
forms other models on both metrics, which we attribute
to the fact that the two reconstruction functions facilitate
tighter intra-cluster bonds.

5.7.2 Link prediction
Following [12], we split the edges into train-
ing/validation/testing sets with proportions 70%, 20%,
10%, respectively, and train a linear classifier with multi-
class binary cross entropy loss based on the embeddings
learned by different models. The results in terms of Area
Under the Receiver Operating Characteristic Curve (ROC
AUC) and Average Precision (AP) on Amazon-Photo are
reported in Table 10, where AEGCL achieves the best
performance. We attribute it to the topology reconstruction
function which directly targets at link structure, as the
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(a) Raw features (b) Graph reconstruction (c) node2vec (d) GCA (e) AEGCL

Fig. 8. Visualization of the pre-trained embeddings on Amazon-Photo. Each point indicates a product and its color indicates the category.
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Fig. 9. The training procedure on Amazon-Photo and Coauthor-CS.

simple baseline Graph Rec also achieves outstanding
performance.

5.7.3 Experiment on protein network

Apart from the six datasets from co-purchase networks, co-
author networks, and citation in Section 5.2, we also conduct
an experiment on protein network PPI [80] as it is highly
dependent on the graph geometry. Furthermore, it is an
inductive task where 20 graphs are for training, 2 graphs are
for validation, and 2 graphs are for testing following [77].
For this dataset, each node has multiple labels that are a
subset of gene ontology sets (121 in total), and node features
include positional gene sets, motif gene sets, and immuno-
logical signatures (50 in total). The node classification results
in terms of Micro-F1 is elaborated in Table 11, from which
we can see that AEGCL still performs the best compared
to other self-supervised learning methods, which shows the
generalizability of AEGCL across different type of graphs.
Interestingly, there is a huge gap between self-supervised
methods and supervised methods like GAT [2], as super-
vision is necessary for multi-label classification tasks. It is
a potential future direction to reduce the performance gap
between supervised and self-supervised learning paradigms
for multi-label classification tasks.

5.8 Visualization

Besides statistical analysis, we also visualize the em-
beddings learned by some self-supervised methods to
achieve an intuitive understanding. Specifically, we utilize
t-SNE [81] to project the node embeddings learned by graph
reconstruction, node2vec, GCA, and AEGCL together with
raw features on Amazon-Photo into a 2-dimensional space.
The results are shown in Fig.8, where each node is colored
by its label.

According to the figure, we can see that graph recon-
struction and node2vec struggle to present clear clusters as
they have blurry boundaries. For GCA, nodes of different
classes are still scattered to some degree. AEGCL performs

the best apparently, for that Fig. 8(e) shows a compact
structure and relatively clear boundaries.

Besides, to better understand the training process, we
also visualize the training records on two datasets, i.e.,
Amazon-Photo and Coauthor-CS to show their converge
trends, as shown in Fig. 9. Both figures show training
loss and classification accuracy (%) on validation set w.r.t.
training epochs. We can see that the training process is
rather stable for that training loss drops and validation
accuracy increases steadily on both datasets. It takes around
500 epochs for both datasets to converge, and the validation
accuracy perturbs on a small scale afterward. We reduce
this influence by reporting the test accuracy when the best
validation accuracy is obtained.

6 CONCLUSION AND FUTURE WORK

In this paper, motivated to improve the effectiveness and ro-
bustness of graph contrastive learning, we propose AEGCL
by introducing graph AutoEncoder to Graph Contrastive
Learning. Benefiting from explicit edge reconstruction and
raw attribute reconstruction, the robustness of GCL can be
improved. Furthermore, we also propose a motif centrality-
based adaptive graph augmentation method which lever-
ages rich-semantic higher-order graph characteristics to
boost the performance of GCL empirically. Extensive ex-
periments compared with both self-supervised learning
methods and semi-supervised learning methods demon-
strate the superior effectiveness and robustness of AEGCL
in downstream node classification tasks with satisfactory
interpretability. In the future, we expect three promising
development avenues: (1) adapting AEGCL to graph-level
representation learning like graph classification and graph
generation; (2) further exploring the robustness of graph
contrastive learning when faced with adversarial graph
attacks; and (3) leveraging the easy-to-conduct graph au-
toencoder task with other downstream tasks to boost their
performance.
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